Betriebsanleitung

PRO IONIZER

Netzgerät der Serie ES61 für Wechselspannungsbetrieb AC

BA-de-2089-2405

How-To-Do Video: **Ionenbalance** Einstellung der Ionenbalance mit dem ELTEX PRO IONIZER URL: https://youtube.com/watch?v=2JJkqxmVnB0

How-To-Do Video: **Performance Control** Kalibrierung, Performance Control und Verschmutzungsüberwachung URL: https://youtube.com/watch?v=d6-BVo4-LII

ES61 im Detail

URL: https://www.eltex.de/pro-ionizer

Inhaltsverzeichnis

1 Geräteansicht Netzgerät ES61	7
1.1 Geräteansicht Netzgerät ES61 mit Display	7
1.2 Geräteansicht Netzgerät ES61 mit Folientastatur	8
1.3 Geräteansicht Netzgerät ES61/E zum Anschluss von	
Ex-Entladeelektroden mit Display oder Folientastatur	9
1.4 Varianten	10
2 Sicherheit	11
2.1 Kennzeichnung von Gefahren	11
2.2 Schutz gegen Berührung	11
2.3 Bestimmungsgemäße Verwendungen	11
2.4 Arbeits- und Betriebssicherheit	12
2.5 Technischer Fortschritt	14
3 Installation und Montage	15
3.1 Montage des Netzgerätes	15
3.2 Anschluss Erdverbindung	16
3.3 Anschließbare Entladeelektroden, Ionenblasdüsen / -köpfe,	
Ionenblaspistolen und Verteiler	17
3.3.1 Maximale aktive Elektrodenlänge und Länge des	
Hochspannungskabels	17
3.3.2 Anschluss des Hochspannungskabels	19
3.3.3 Lösen des Hochspannungskabels	20
3.4 Anschluss der Versorgungsspannung	21
3.4.1 Anschluss Versorgungsspannung DC (ES61/_D)	21
3.4.2 Anschluss Versorgungsspannung AC (ES61/_A).	21
3.4.3 Externe Absicherung	22
3.5 Sensoreingang (optional)	22
	23
	24
	25
	26
3.8 EInsatz Eltex Signalkabel CS und Netzkabel KN	27
1 Detrich	20
4 Delled	
4.1 Indetnednamme	
4.2 Emisteriuny des Neizyerales ESOI	29 24
4.5 Fulkuolisuber Wachung	וט דנ
4.4 Freigabe del Hourispannung	3/ 20
4.5 Integrierite Deuterieriteriterite	30 20
4.5.1 Deuteriung Follentastatui	30 20

4.5.2.6.3 Istwerte Allgemein
4.5.2.7 Allgemeine Geräteinformationen
5 Wartung
6Störungsbeseitigung786.1Fehlermeldungen786.2Warnungsmeldungen84
7 Technische Daten ES6188
8 Abmessungen90
9 Ersatzteile und Zubehör91
10 Entsorgung
A ANHANG
A.1 Konfektionierung der Stecker
 A.1.1 Stecker M16 für 24 V DC Spannungsversorgun Gerade Version, Ausführung mit Schirmklemmring
Sensoreingang94
A.2 Ubersicht der Istwerte
A.3 Übersicht Parameter
A.4 Optimierung Restladung104
A.5 Verschmutzungsüberwachung106
Konformitätserklärung
UKCA Konformität

Verehrter Kunde

Das Hochspannungs-Netzgerät PRO IONIZER der Serie ES61 ist eine universell nutzbare Stromversorgungseinheit zur kontrollierten Entladung.

Die Netzgeräte ES61 dürfen nur mit den zugehörigen Eltex Entladeelektroden für Wechselspannungsbetrieb (AC) der Serien R47, R5x und R6x sowie den Ionenblasdüsen, Ionenblaspistolen und Verteilern jeweils mit fest angeschlossenem Hochspannungskabel betrieben werden.

Die Entladeelektroden und das Netzgerät ES61 werden vor allem dort eingesetzt, wo störende elektrostatische Ladung den Produktionsprozess beeinträchtigt und daher eliminiert werden muss.

Das Netzgerät ES61 zeichnet sich durch folgende Merkmale aus:

- 4 steckbare Hochspannungsausgänge
- stabile Ausgangsspannung einstellbar zwischen 3,5 5 kV AC
- einfache Einstellbarkeit der Ionen-Balance und der Entladefrequenz zwischen 50 Hz und 200 Hz
- geringe Abmessungen
- leichte Montage
- solide Ausführung in IP54
- robuster, kompakter Aufbau
- geringes Gewicht
- · integrierte Funktions- und Störungsüberwachung
- LED-Anzeige zur Visualisierung des Betriebszustandes
- Einbindung des Netzgerätes in CANopen® Netzwerke (optional)
- Industrial-Ethernet-Unterstützung (optional)
- Sensoreingang (optional)
- Betrieb von Ex-Entladeelektroden (optional)

Die Spracheinstellung bei der Displayvariante finden Sie in <u>Kapitel</u> <u>4.5.2.2.3 "Einstellungen", Seite 60</u>.

Bitte lesen Sie die Betriebsanleitung vor der Inbetriebnahme des Gerätes sorgfältig durch. Sie vermeiden damit Gefahren für Personen und Sachgegenstände.

Wenn Sie Fragen, Anregungen oder Verbesserungsvorschläge haben, dann rufen Sie uns einfach an. Wir freuen uns über jeden Austausch mit den Anwendern unserer Geräte.

1. Geräteansicht Netzgerät ES61

1.1 Geräteansicht Netzgerät ES61 mit Display

Abb. 1: Hochspannungs-Netzgerät ES61 mit Display

- 1 Zuleitung der Versorgungsspannung
- 2 Sicherung (Typ: siehe Typenschild)
- 3 Betriebsschalter EIN / AUS
- 4 Erdungsklemme
- 5 Hochspannungsanschlüsse (4 Stück)
- 6 Sensoreingang (optional)
- 7 Schnittstelle 1 und 2 Feldbus (optional)
- 8 I/O-Schnittstelle (optional)
- 9 Service-Schnittstelle
- 10 Markierung Hochspannungsanschlüsse (1 bis 4)
- 11 Touchscreen
- 12 Befestigungslasche
- 13 Leuchtanzeigen

1.2 Geräteansicht Netzgerät ES61 mit Folientastatur

Abb. 2: Hochspannungs-Netzgerät ES61 mit Folientastatur

- 1 Zuleitung der Versorgungsspannung
- 2 Sicherung (Typ: siehe Typenschild)
- 3 Betriebsschalter EIN / AUS
- 4 Erdungsklemme
- 5 Hochspannungsanschlüsse (4 Stück)
- 6 Sensoreingang (optional)
- 7 Schnittstelle 1 und 2 Feldbus (optional)
- 8 I/O-Schnittstelle (optional)
- 9 Service-Schnittstelle
- 10 Markierung Hochspannungsanschlüsse (1 bis 4)
- 11 Folientastatur
- 12 Befestigungslasche
- 13 Leuchtanzeigen

- Ó Abb. 3: Hochspannungs-Netzgerät ES61/E hier abgebildet mit 7 18 ¹9 ¹10 ¹11 ¹3¹2¹1 12 ¹13 15 14 6 Folientastatur
- 1.3 Geräteansicht Netzgerät ES61/E zum Anschluss von Ex-Entladelektroden, mit Display oder Folientastatur

- 1 Zuleitung der Versorgungsspannung
- 2 Sicherung (Typ: siehe Typenschild)
- 3 Betriebsschalter EIN / AUS
- 4 Erdungsklemme
- 5 Hochspannungsanschlüsse (4 Stück)
- 6 Sensoreingang (optional)
- 7 Schnittstelle 1 und 2 Feldbus (optional)
- 8 I/O-Schnittstelle (optional)
- 9 Service-Schnittstelle
- 10 Markierung Hochspannungsanschlüsse (1 bis 4)
- 11 Folientastatur
- 12 Befestigungslasche
- 13 Leuchtanzeigen

z-118404y_11

1.4 Varianten

Die Hochspannungs-Netzgeräte der Familie ES61 sind in unterschiedlichen Varianten verfügbar. Die Kombinationsmöglichkeiten sind abhängig von der Netzspannung, der Bedienung, den Schnittstellen etc.

Referenzcode mit den einzelnen Ausprägungen:

	Artikel- code	Ausführung		Ausprägung
1	Variable		P E	Performance Control Anschluss von Ex-Entladeelektroden
2	Variable	Netzspannung	A D	90 - 264 V AC 24 V DC
3	Variable	Kabelausführung	A D O X	Netzkabel mit Schukostecker mit 24 V DC Steckverbinder (female) Netzkabel mit offenem Ende, Kabellänge angeben ohne 24 V DC Steckverbinder
4	Variable	Kabellänge		005 - 995 dm (nur bei Kabelausführung "O")
5	Variable	Bedienung	D K X	Touchscreen Folientastatur ohne
6	Variable	I/O-Schnittstelle	X C R S	ohne kombinierte I/O-Schnittstelle und Sensoreingang I/O-Schnittstelle Sensoreingang
7	Variable	Feldbus (optional)	×c⊻	ohne CANopen® ModbusTCP
8	Variable	Zulassungen		siehe Gerätekennzeichnung
9	Variable	Verkaufsvariante		Standard

2. Sicherheit

Die Geräte ES61 sind nach dem neuesten Stand der Technik betriebssicher konstruiert, gebaut, geprüft und haben das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen. Trotzdem können vom Gerät Gefahren für Personen und Sachgegenstände ausgehen, wenn das Gerät unsachgemäß betrieben wird. Die Betriebsanleitung ist daher in vollem Umfange zu lesen und die Sicherheitshinweise sind zu beachten.

Die Garantieregelungen entnehmen Sie bitte den Allgemeinen Geschäftsbedingungen (AGB), siehe www.eltex.de.

2.1 Kennzeichnung von Gefahren

In der Betriebsanleitung wird auf mögliche Gefahren beim Gebrauch der Netzgeräte mit folgenden Symbolen hingewiesen:

Warnung!

Dieses Symbol kennzeichnet in der Betriebsanleitung Handlungen, die bei unsachgemäßer Durchführung eine Gefahr für Leib und Leben von Personen darstellen können.

Mit diesem Symbol sind in der Betriebsanleitung alle Handlungen gekennzeichnet, von denen mögliche Gefahren für Sachgegenstände ausgehen können.

2.2 Schutz gegen Berührung

Da sich der Einbau bzw. der Einsatzort der Geräte der Kenntnis von Eltex entzieht, ist ein Berührungsschutz gegen unbeabsichtigtes Berühren der Elektroden und hochspannungsführenden Teile durch Personen gemäß den zutreffenden berufsgenossenschaftlichen Vorschriften vorzusehen (z.B. DGUV V3 in Deutschland). Ist der Berührungsschutz aus leitfähigem Material, so ist dieser zu erden.

2.3 Bestimmungsgemäße Verwendungen

Die Netzgeräte ES61 dürfen nur mit den zugehörigen Eltex Entladeelektroden für Wechselspannungsbetrieb (AC) sowie den Ionenblasdüsen, Ionenblaspistolen und Verteilern jeweils mit fest angeschlossenem Hochspannungskabel betrieben werden.

Umbauten und Veränderungen an dem Netzgerät sind nicht zugelassen.

Es dürfen nur Originalersatzteile und Zubehör von Eltex verwendet werden.

Bei nicht sach- und bestimmungsgemäßer Verwendung wird jede Haftung und Garantie durch den Hersteller abgelehnt.

2.4 Arbeits- und Betriebssicherheit

Warnung!

Beachten Sie nachstehende Hinweise und das komplette Kapitel 2 "Sicherheit", Seite 11 genau!

Beachten Sie grundsätzlich die in Ihrem Land geltenden Vorschriften für elektrische Geräte.

- Vor der Installation, dem Beheben von Betriebsstörungen und vor dem Ausführen von Reinigungs- und Wartungsarbeiten an den Geräten und den zugehörigen Komponenten ist das Netzgerät abzuschalten und die Netzversorgung zu unterbrechen (siehe <u>Kapitel 3 "Installation und Montage", Seite 15</u>, <u>Kapitel 5 "Wartung", Seite 77</u>, <u>Kapitel 6 "Störungsbeseitigung", Seite 78</u>).
- Werden elektrisch leitfähige bzw. leitfähig beschichtete Substrate (z.B. Metallfolien bzw. Metallverbundstoffe) verarbeitet, so ist die Freigabe der Hochspannung (siehe <u>Kapitel 3.6 "I/O-Schnittstelle (optional)"</u>, <u>Seite 23</u>, <u>Kapitel 4.4 "Freigabe der Hochspannung"</u>, <u>Seite 37</u>) zu sperren.
- Bei sämtlichen Arbeiten darf die Maschine, an der die Geräte installiert sind, nicht in Betrieb sein (siehe <u>Kapitel 3 "Installation und Montage",</u> <u>Seite 15, Kapitel 5 "Wartung", Seite 77, Kapitel 6 "Störungsbeseiti-</u> <u>gung", Seite 78</u>).
- Sämtliche Arbeiten an den Geräten dürfen nur von Elektrofachpersonal durchgeführt werden (siehe <u>Kapitel 3 "Installation und Montage", Seite</u> <u>15</u>, <u>Kapitel 5 "Wartung", Seite 77</u>, <u>Kapitel 6 "Störungsbeseitigung",</u> <u>Seite 78</u>, <u>Kapitel 10 "Entsorgung", Seite 92</u>).
- Der Montageort muss trocken und möglichst staubfrei und die Luftzirkulation darf nicht beeinträchtigt sein (siehe <u>Kapitel 3.1 "Montage des</u> <u>Netzgerätes", Seite 15</u>).
- Vor der Inbetriebnahme des Netzgerätes ist darauf zu achten, dass das Gerät über die Erdungsklemme dauergeerdet ist. Das Erdungskabel sollte einen Mindestquerschnitt von 1,5 mm² aufweisen und auf kürzestem Weg leitfähig mit dem Maschinengestell verbunden werden. Bei einer Kabellänge über 0,5 m sind 2,5 mm² erforderlich. Der Anschluss der Erdverbindung ist für die gesamte Betriebsdauer des Netzgerätes dauerhaft sicher zu stellen (siehe Kapitel 3.2 "Anschluss Erdverbindung", Seite 16).
- Für das Verlegen der Hochspannungskabel <u>Kapitel 3.3.2 "Anschluss</u> des Hochspannungskabels", Seite 19 beachten.
- Bei Anwendungen mit bewegten Elektroden müssen die Hochspannungskabel so befestigt werden, dass im Anschlussbereich des Netzgerätes keine Kabelbewegungen auftreten (siehe <u>Kapitel 3.3</u> <u>"Anschließbare Entladeelektroden, Ionenblasdüsen / -köpfe, Ionen-</u>

blaspistolen und Verteiler", Seite 17, Kapitel 3.3.2 "Anschluss des Hochspannungskabels", Seite 19).

- Ist keine Entladeelektrode an der jeweiligen Steckverbindung des Netzgerätes angeschlossen, muss diese unbedingt mit dem mitgelieferten Blindstopfen geschlossen werden (siehe <u>Kapitel 3.3 "Anschließbare</u> <u>Entladeelektroden, Ionenblasdüsen / -köpfe, Ionenblaspistolen und</u> <u>Verteiler", Seite 17, Kapitel 3.3.2 "Anschluss des Hochspannungskabels", Seite 19</u>).
- Beachten Sie die maximale aktive Gesamtlänge der Elektroden und Hochspannungskabel (siehe <u>Kapitel 3.3.1 "Maximale aktive Elektro-</u><u>denlänge und Länge des Hochspannungskabels", Seite 17</u>).
- Die Elektroden d
 ürfen nur angeschlossen bzw. gelöst werden, wenn das Netzger
 ät abgeschaltet ist (siehe <u>Kapitel 3.3.2 "Anschluss des</u> <u>Hochspannungskabels", Seite 19</u>).
- Damit bei stillstehender Materialbahn keine Hochspannung an den Elektroden anliegt, wird empfohlen, die Versorgungsspannung des Netzgerätes über einen Maschinenkontakt freizugeben. Steht die Materialbahn still oder ist die Maschine nicht in Betrieb, liegt dann keine Hochspannung an den Elektroden an (siehe Kapitel 3.4 "Anschluss der Versorgungsspannung", Seite 21).
- Aufgrund der Leistungsaufnahme des Netzgerätes sind zur Reduzierung der Kabelverluste größtmögliche Kabelquerschnitte und kurze Leitungen zu verwenden (siehe <u>Kapitel 3.4.1 "Anschluss</u> <u>Versorgungsspannung DC (ES61/_D)", Seite 21</u>).
- Die Spannung darf an den einzelnen Kontakten 60 V DC nicht überschreiten (siehe <u>Kapitel 3.4.1 "Anschluss Versorgungsspannung DC</u> (ES61/_D)", Seite 21, Kapitel 3.5 "Sensoreingang (optional)", Seite 22, Kapitel 3.7 "Feldbus-Schnittstellen", Seite 24).
- Bitte achten Sie auf korrekten Anschluss der Signalleitungen, um eine Beschädigung des Netzgerätes zu vermeiden (siehe <u>Kapitel 3.5 "Sen-</u> soreingang (optional)", Seite 22).
- Beim Einsatz der Variante mit CANopen® ist f
 ür beide Busleitungen ein f
 ür CAN-Bus-Netzwerke geeignetes Kabel mit einem Wellenwiderstand von 120 Ohm zu verwenden (siehe <u>Kapitel 3.7.1 "CANopen®</u> (optional)", Seite 25).
- Für die Schnittstellenkabel sind grundsätzlich geschirmte Kabel zu verwenden; die Schirme sind beidseitig aufzulegen (siehe <u>Kapitel 3.5</u> <u>"Sensoreingang (optional)", Seite 22, Kapitel 3.6 "I/O-Schnittstelle (optional)", Seite 23, Kapitel 3.7.2 "ModbusTCP (optional)", Seite 26).
 </u>
- Bei Verwendung der bei Eltex optional erhältlichen Signalkabel CS und Netzkabel KN sind für den Anschluss der einzelnen Leitungen die farblichen Markierungen und Biegeradien zu beachten (siehe <u>Kapitel</u> <u>3.8 "Einsatz Eltex Signalkabel CS und Netzkabel KN", Seite 27</u>).

- Das Netzgerät, alle angeschlossenen Geräte sowie die elektrischen Leitungen und Hochspannungskabel sind in regelmäßigen Abständen auf Schäden zu überprüfen. Liegt ein Schaden vor, so ist dieser vor einem weiteren Betrieb der Geräte zu beheben oder die Geräte sind außer Betrieb zu setzen.
- Ein Öffnen des Gerätes bzw. Entfernen des Gehäusedeckels ist nicht vorgesehen.
 Die Schutzart IP54 gilt nur bei geschlossenem Gehäusedeckel und abgedeckten Kabelanschlüssen.
- Vor der Inbetriebnahme hat sich der Anwender von der korrekten Installation und Montage des Netzgerätes und der Entladeelektroden zu vergewissern. Danach kann die Versorgungsspannung eingeschaltet werden (siehe <u>Kapitel 4.1 "Inbetriebnahme", Seite 29</u>).
- Das Netzgerät ist in regelmäßigen Abständen auf seine korrekte Funktion zu überprüfen. Der Anschlussbereich der Hochspannungskabel muss frei von Verschmutzungen sein (siehe <u>Kapitel 5 "Wartung",</u> <u>Seite 77</u>).

2.5 Technischer Fortschritt

Der Hersteller behält sich vor, technische Daten ohne spezielle Ankündigung dem entwicklungstechnischen Fortschritt anzupassen. Über die Aktualität und eventuelle Änderungen und Erweiterungen der Betriebsanleitung gibt Ihnen Eltex gerne Auskunft.

3. Installation und Montage

3.1 Montage des Netzgerätes

Das Gerät ist für die Wandmontage vorbereitet. Die Befestigung erfolgt an den Befestigungslaschen. Bei der Montage des Gerätes ist darauf zu achten, dass die Bedienelemente und Anschlussbuchsen gut zugänglich sind und eine Kontrolle des Gerätes möglich ist.

Der Montageort muss trocken und möglichst staubfrei und die Luftzirkulation darf nicht beeinträchtigt sein.

Z-118404y_4

Montageposition

In Abb. 4 und Abb. 5 sind die beiden zulässigen Einbaupositionen dargestellt. Es ist darauf zu achten, dass die zulässige Umgebungstemperatur auf allen Seiten des Gehäuses und zu jeder Zeit nicht überschritten wird.

Abb. 5: Montage des Netzgerätes, horizontaler Einbau

3.2 Anschluss Erdverbindung

Der Anschluss der Erdverbindung ist für die gesamte Betriebsdauer des Netzgerätes dauerhaft sicher zu stellen. Das Erdungskabel sollte einen Mindestquerschnitt von 1,5 mm² aufweisen und auf kürzestem Weg leitfähig mit dem Maschinengestell verbunden werden. Bei einer Leitungslänge von > 0,5 m ist ein Querschnitt von mindestens 2,5 mm² zu verwenden. Eltex empfiehlt die Verwendung des im Lieferumfang enthaltenen Erdungskabels.

Erdungsklemme

Das Erdungskabel ist in den seitlichen Schlitz der geöffneten Klemme so weit einzuführen, dass es auf der gegenüberliegenden Seite hervorsteht. Danach die integrierte Sicherung der Klemme bis zum Anschlag (5 Nm) anziehen.

3.3 Anschließbare Entladeelektroden, Ionenblasdüsen / -köpfe, Ionenblaspistolen und Verteiler

Es dürfen nur Eltex Entladeelektroden für Wechselspannungsbetrieb (AC) sowie die Ionenblasdüsen, Ionenblaspistolen und Verteiler jeweils mit fest angeschlossenem Hochspannungskabel angeschlossen werden.

Warnung!

Bei Anwendungen mit bewegten Elektroden müssen die Hochspannungskabel so befestigt werden, dass im Anschlussbereich des Netzgerätes keine Kabelbewegungen auftreten.

Ist keine Entladeelektrode an der jeweiligen Steckverbindung des Netzgerätes angeschlossen, muss diese unbedingt mit dem mitgelieferten Blindstopfen geschlossen werden.

3.3.1 Maximale aktive Elektrodenlänge und Länge des Hochspannungskabels

Die Länge des Hochspannungskabels und die aktive Elektrodenlänge sind begrenzt. Durch die abgeschirmten Hochspannungskabel wird der Transformator im Netzgerät kapazitiv belastet.

Bei höheren Entladefrequenzen steigt die Belastung. Die anzuschliessende max. Last reduziert sich mit dem Kehrwert der Frequenzänderung (Frequenzverdoppelung = Halbierung Belastbarkeit). Die maximale Belastbarkeit ergibt sich als Funktion der gesamten aktiven Elektrodenlänge, der Gesamtlänge aller Hochspannungskabel und der Entladefrequenz.

In Abb. 6 ist dieser Zusammenhang für R50-Elektroden, Ionenblasdüsen R36E, Ionenblasköpfe R55E und Ionenblaspistolen PR36 und PR55 bei unterschiedlichen Werten dargestellt.

Σ Aktive Elektrodenlängen [m]

Beispiel: Die maximal mögliche Gesamtkabellänge bei 3 Metern aktiver Elektrodenlänge beträgt 32 Meter.

Abb. 6: Belastbarkeit des Netzgerätes in Abhängigkeit von Elektroden- und Hochspannungskabellänge von R50-Elektroden, R36E, R55E, PR36, PR55

Z01171d

BA-de-2089-2405 ES61

In Abb. 7 ist dieser Zusammenhang für R47 und R6x-Elektroden bei unterschiedlichen Werten dargestellt.

Abb. 7: Belastbarkeit des Netzgerätes in Abhängigkeit von Elektroden- und Hochspannungskabellänge von R47 oder R6x-Elektroden

Hinweis:

Die Angaben der maximal anschließbaren Kabellänge bzw. aktiven Elektrodenlänge beziehen sich auf die maximale Einstellung des Sollwerts der Entladespannung. Bei einer Reduzierung dieser Einstellung erhöht sich die maximal anschließbare Länge für die Elektroden und Hochspannungskabel.

Beim Anschluss mehrerer Verbraucher (Elektroden, Ionenblasdüsen, Ionenblasköpfe) unter Verwendung eines Hochspannungsverteilers ESVY61 / ESV61 muss die gesamte aktive Elektroden- und Kabellänge innerhalb des zulässigen Bereichs des Belastbarkeitsdiagramms (Abb. 6 / Abb. 7) liegen.

Z01172d

3.3.2 Anschluss des Hochspannungskabels

Warnung! Stromschlaggefahr!

Die Arbeiten dürfen nur durchgeführt werden, wenn:

- die Versorgungsspannung zum Netzgerät unterbrochen wurde,
- die Maschine still steht, da die Elektroden bei laufender Materialbahn Ladung aufnehmen.

Die Elektroden werden über das vorkonfektionierte Hochspannungskabel am Netzgerät angeschlossen. Die Hochspannungskabel werden bis zum Anschlag in die Buchse eingeführt. Anschließend wird der Adapter in der Buchse mit dem Clip gesichert (siehe Abb. 8).

Kabel ohne Adapter haben eine farbige Markierung auf dem Schutzschlauch. Diese Markierung muss bündig mit der Außenkante der Verschraubung abschließen. Kabel ohne Schutzschlauch und Kabel mit Steckadapter werden bündig eingesteckt und mit dem Clip gesichert.

Abb. 8: Anschluss der Hochspannungskabel

Warnung!

Company and the particular

Bei Anwendungen mit bewegten Elektroden müssen die Hochspannungskabel so befestigt werden, dass im Anschlussbereich des Netzgerätes keine Kabelbewegungen auftreten.

Ist keine Entladeelektrode an der jeweiligen Steckverbindung des Netzgerätes angeschlossen, muss diese unbedingt mit dem mitgelieferten Blindstopfen geschlossen werden.

Die Elektroden dürfen nur angeschlossen bzw. gelöst werden, wenn das Netzgerät abgeschaltet ist.

200004y

3.3.3 Lösen des Hochspannungskabels

Warnung! Stromschlaggefahr!

Die Arbeiten dürfen nur durchgeführt werden, wenn:

- die Versorgungsspannung zum Netzgerät unterbrochen wurde,
- die Maschine still steht, da die Elektroden bei laufender Materialbahn Ladung aufnehmen.

3.4 Anschluss der Versorgungsspannung

Warnung! Stromschlaggefahr!

Die Arbeiten dürfen nur durchgeführt werden, wenn:

- die Versorgungsspannung zum Netzgerät unterbrochen wurde,
- die Maschine still steht, da die Elektroden bei laufender Materialbahn Ladung aufnehmen.

Damit bei stillstehender Maschine keine Hochspannung an den Elektroden anliegt, sollte die Versorgungsspannung zum Netzgerät über einen Maschinenkontakt frei gegeben werden, der bei nicht laufender Maschine die Hochspannung abschaltet.

3.4.1 Anschluss Versorgungsspannung DC (ES61/_D)

Die Versorgungsspannung des Netzgerätes wird über den 4-poligen Rundsteckverbinder an das 24 V DC Versorgungsnetz angeschlossen.

Abb. 9: Steckerbelegung 24 V DC Stecker Versorgungsspannung

Aderfarbe 1 +24 V DC weiß 2 +24 V DC braun 3 0 V und Erdung grün 4 0 V und Erdung gelb

Bei Geräteausführung mit fest angeschlossenem Netzkabel beachten Sie bitte die abweichende, korrekte Aderbelegung:

1: 24 DC 2: 0 V ge/gn: PE

Bei Geräteausführung mit Steckverbinder und zweiadrigem Kabel empfehlen wir im Stecker die Brückung der Kontakte 1 und 2 sowie 3 und 4.

Achtung!

Aufgrund der Leistungsaufnahme des Netzgerätes sind zur Reduzierung der Kabelverluste größtmögliche Kabelquerschnitte und kurze Leitungen zu verwenden.

Die Spannung darf an den einzelnen Kontakten 60 V DC nicht überschreiten.

3.4.2 Anschluss Versorgungsspannung AC (ES61/_A)

Die Netzspannung von 90 - 264 V AC wird über das konfektionierte Netzkabel mit Schuko-Winkelstecker oder offenen Enden zum Auflegen auf Klemmen im Schaltschrank angeschlossen.

F00061y

BA-de-2089-2405_ES61

3.4.3 Externe Absicherung

Bei externer Absicherung des Netzgerätes empfehlen wir abhängig von der Ausführungsvariante folgenden Leitungsschutzschalter:

ES61/_A: 2 A, Auslöse-Charakteristik "C" ES61/_D: 4 A, Auslöse-Charakteristik "C"

3.5 Sensoreingang (optional)

nur Varianten ES61/_...C und ES61/_...S siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10

Die Schnittstelle ermöglicht den Anschluss eines E-Feldsensors bzw. Drehzahlsensors. Weiterhin ist der Anschluss einer externen Erweiterungsbox für die Auswertung mehrerer Sensoren möglich.

Zur Nutzung des Sensoreingangs ist die entsprechende Parameter-Einstellung auszuwählen, siehe Kapitel A.3.4 "Parameter Sensor", Seite 103.

Achtung!

- Bitte achten Sie auf korrekten Anschluss der Signalleitungen, um eine Beschädigung des Netzgerätes zu vermeiden.
- Zur Verdrahtung der analogen Schnittstelle sind geschirmte Kabel zu verwenden; der Schirm ist beidseitig aufzulegen.
- Die Spannung darf an den einzelnen Kontakten 60 V DC nicht überschreiten.

Steckerbelegung Sensoreingang

- 1 GND
- 2 +24 V DC Ausgang, ±20 %, I < 50 mA
- 3 analoger Sensoreingang
- 4 digitaler Sensoreingang
 0 V
 digital Low
 24 V DC
 digital High

Abb. 10: Steckerbelegung Sensoreingang

F00076y

Bei der Nutzung eines Drehzahlsensors ist darauf zu achten, dass ein geeigneter Drehzahlsensor mit einer Versorgungsspannung von 24 V DC und einem PNP-Sensorausgang verwendet wird.

Die externe Erweiterungsbox für die Auswertung weiterer Sensoren ist an die beiden Anschlüsse GND und digitaler Sensoreingang anzuschließen. Für weitere Informationen beachten Sie bitte die Dokumentation der Erweiterungsbox.

3.6 I/O-Schnittstelle (optional)

nur Varianten ES61/_...C und ES61/_...R siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10

Die Schnittstelle ermöglicht das Einbinden des Netzgerätes an eine SPS oder andere Umgebungen zur Funktions- und Störmeldeüberwachung. Eine Hardware-Freigabe ist optional.

Achtung!

- Bitte achten Sie auf korrekten Anschluss der Signalleitungen, um eine Beschädigung des Netzgerätes zu vermeiden.
- Zur Verdrahtung der Schnittstelle sind geschirmte Kabel zu verwenden; der Schirm ist beidseitig aufzulegen.
- Die Spannung darf an den einzelnen Kontakten 60 V DC nicht überschreiten.

Abb. 11: Steckerbelegung Schnittstelle Entladung

F00052y

Abb. 12:

1 Freigabe 1

Aderfarbe: weiß

Externes 24 V-Signal zur Freischaltung der Hochspannung U = 24 V DC ±10 %, I <20 mA

Weitere Details zur Freigabeschaltung siehe Kapitel 4.4 "Freigabe der Hochspannung", Seite 37.

2 Störmeldeausgang

Aderfarbe: braun

0 V:

Das Netzgerät ist nicht bereit bzw. hat einen Fehler detektiert; die Hochspannung ist deaktiviert.

24 V DC:

Das Netzgerät ist in Betrieb und es sind keine Fehler aufgetreten. 24 V DC / I < 50 mA

3 Freigabe 2

Aderfarbe: grün

Externes 24 V-Signal zur Freischaltung der Hochspannung U = 24 V DC \pm 10 %, I <20 mA

Weitere Details zur Freigabeschaltung siehe Kapitel 4.4 "Freigabe der Hochspannung", Seite 37.

4 Meldeausgang

Aderfarbe: gelb

24 V-Signal zur Signalisierung interner Gerätezustände. Für weitere Informationen, siehe Kapitel 4.3 "Funktionsüberwachung", Seite 31.

24 V DC / I < 50 mA

5 GND

Aderfarbe: grau

3.7 Feldbus-Schnittstellen

Warnung!

Stromschlaggefahr!

Die Arbeiten dürfen nur durchgeführt werden, wenn:

- die Versorgungsspannung zum Netzgerät unterbrochen wurde,
- die Maschine still steht, da die Elektroden bei laufender Materialbahn Ladung aufnehmen.

Achtung!

Die Spannung darf an den einzelnen Kontakten 60 V DC nicht überschreiten.

3.7.1 CANopen® (optional)

nur Varianten ES61/ ...C siehe Tabelle Pos. 7, Kapitel 1.4 "Varianten", Seite 10

Die Netzgeräte ES61/ C unterstützen das nach CiA 301 standardisierte CANopen® Protokoll. Das Netzgerät meldet sich als Slave mit dem Geräteprofil 401 für Ein-/Ausgabegeräte im Netzwerk an. Es werden folgende CANopen® Dienste unterstützt:

- Emergency Protokoll (EMCY) zur Übertragung von Fehler- und Warnungsereignissen
- Heartbeat Producer zur Knotenüberwachung
- Statisches Mapping f
 ür PDO-Transfer Alle wichtigen Daten sind in PDOs verfügbar.
- Umgehender SDO-Transfer Segmentierter Transfer und Block Transfer sind nicht unterstützt.
- CANopen®-Objekte zum Speichern und Wiederherstellen von Parameterdaten
- LSS-Dienste zur Einstellung der Knotenadresse und Baudrate (siehe Kap. 4.5).

Die komplette Beschreibung des CANopen®-Protokolls für das Netzgerät ES61 sowie die dazugehörige EDS-Datei "ES61.eds" sind in separaten Dateien verfügbar. Die Dateien stehen zum Download auf der Produktseite Entladung/Netzgeräte/PRO IONIZER unter www.eltex.de bereit.

Busanfang und Busende sind mit einem Busabschluss zu versehen.

Steckerbelegung CANopen®

Steckverbinder M12x1 A-kodiert

Schirm 1 2 NC rot 3 GND-Bus schwarz 4 CAN-H weiß 5 CAN-L blau Steckergehäuse: Schirm

Stecker male

Abb. 13: Steckerbelegung CAN-Bus female/ male

Achtung!

Buchse female

Beim Einsatz der Variante mit CANopen® ist für beide Busleitungen ein für CAN-Bus-Netzwerke geeignetes Kabel mit einem Wellenwiderstand von 120 Ohm zu verwenden; nur so ist eine einwandfreie Funktion des CAN-Netzwerkes gewährleistet.

Die in CiA 303-1 spezifizierten maximalen Kabellängen in Abhängigkeit der Übertragungsgeschwindigkeit sind für das gesamte Netzwerk sowie für die einzelnen Stichleitungen zu beachten.

Aderfarbe

=00052y + F00053y

Achtung!

Bei nicht angeschlossener Buskommunikation tritt eine Warnungsmeldung auf. Das Auftreten dieser Warnungsmeldung kann durch Deaktivierung der CANopen®- Kommunikation unterdrückt werden; siehe Kapitel 4.5.1.10.7 "CANopen® Baudrate", Seite 49 für die Einstellung mittels Folientastatur und Kapitel 4.5.2.5.3 "Parameter Allgemein", Seite 69 für die Einstellung über das Displays.

3.7.2 ModbusTCP (optional)

nur Varianten ES61/_...M siehe Tabelle Pos. 7, Kapitel 1.4 "Varianten", Seite 10

Die Netzgeräte der ES61/_M Familie können mittels des TCP/IP-Standard- ModbusTCP-Protokolls in ein bestehendes LAN-Netzwerk eingebunden werden.

Alle Varianten mit dieser Option unterstützen folgende Funktionen:

- 10/100 Mbit/s Übertragung
- DHCP-Protokoll zur Einstellung der IP-Adresse (standardmäßig aktiviert)
- Feste Einstellung der IP-Adresse möglich
- Zyklischer Abruf der Prozessdaten
- Einstellung und Auslesen des Parametersatzes
- LED-Ausgabe für Netzwerk- und Verbindungsstatus

Die komplette Beschreibung der unterstützten Befehle und Zuordnung von Prozessdaten, Parametern, etc. der jeweiligen Register sind in separaten Dateien verfügbar. Die Dateien stehen zum Download auf der Produktseite Entladung/Netzgeräte/PRO IONIZER unter www.eltex.de bereit.

Achtung!

Für den Anschluss des Netzgerätes in das Netzwerk sind geeignete, geschirmte Kabel zu verwenden; der Schirm ist an beiden Enden an einer geeigneten Stelle aufzulegen. Kabel der Kategorie Cat 5e oder höher sind bevorzugt einzusetzen.

Abb. 14: Steckerbelegung Steckverbinder M12x1 D-kodiert

2 x Buchse female

3.8 Einsatz Eltex Signalkabel CS und Netzkabel KN

Bei Verwendung der bei Eltex optional erhältlichen Signalkabel CS und Netzkabel KN sind für den Anschluss der einzelnen Leitungen nachstehende Daten, farbliche Markierungen und Biegeradien zu beachten.

Verfügbare Kabelvarianten

- CS/E Signalkabel I/O-Schnittstelle CS/EMO Anschluss Netzgerät: Stecker gerade offenes Ende Anschluss Kunde: CS/C Signalkabel CANopen® CS/CFFG Anschluss Netzgerät: Buchse gerade Anschluss Kunde: Buchse gerade CS/CFFW Anschluss Netzgerät: Buchse gerade Anschluss Kunde: Buchse gewinkelt CS/CFMG Anschluss Netzgerät: Buchse gerade Anschluss Kunde: Stecker gerade CS/CFMW Anschluss Netzgerät: Buchse gerade Anschluss Kunde: Stecker gewinkelt CS/CFO Anschluss Netzgerät: Buchse gerade Anschluss Kunde: offenes Ende CS/CMFG Anschluss Netzgerät: Stecker gerade Anschluss Kunde: Buchse gerade CS/CMFW Anschluss Netzgerät: Stecker gerade Anschluss Kunde: Buchse gewinkelt CS/CMMG Anschluss Netzgerät: Stecker gerade Anschluss Kunde: Stecker gerade CS/CMMW Anschluss Netzgerät: Stecker gerade Anschluss Kunde: Stecker gewinkelt CS/CMO Anschluss Netzgerät: Stecker gerade Anschluss Kunde: offenes Ende CS/C Signalkabel Feldbus Industrial Ethernet Anschluss Netzgerät: Stecker gerade CS/IMMG Anschluss Kunde: Stecker gerade Anschluss Netzgerät: Stecker gerade CS/IMMW
 - Anschluss Kunde: Stecker gewinkelt CS/IMR Anschluss Netzgerät: Stecker gerade Anschluss Kunde: RJ45 Stecker
- KN/H Netzkabel Versorgungsspannung 24 V KN/HD Anschluss Netzgerät: Stecker gerade Anschluss Kunde: offenes Ende

Belegung der Kabel für Anschluss offenes Ende

CS/E Signalkabel I/O-Schnittstelle

Ader-Nr.	Ader-Farbe	Signal
1	weiß	Freigabe 1
2	braun	Störmeldeausgang
3	grün	Freigabe 2
4	gelb	Meldeausgang
5	grau	Störmeldeausgang
	Schirm	GND

CS/C Signalkabel CANopen®

Ader-Nr.	Ader-Farbe	Signal
2	rot	+24 V DC Ausgang (optional)
3	schwarz	GND-Bus
4	weiß	CAN-H
5	blau	CAN-L
	Schirm	GND

KN/H Netzkabel Versorgungspannung 24 V DC

Ader-Nr.	Ader-Farbe	Signal
1	weiß	+24 V DC
2	braun	+24 V DC
3	grün	0 V
4	gelb	0 V

Mindestbiegeradien

Bei der Verlegung der Kabel sind folgende Mindestbiegeradien zu beachten:

Kabel	CS/E	CS/C	CS/I	KN/H
fest verlegt	34,8 mm	55,0 mm	35,0 mm	36,6 mm
bewegt	87,0 mm	110,0 mm	100,0 mm	91,5 mm

4. Betrieb

Der aktuelle Betriebszustand des Netzgerätes wird bei allen Varianten durch eine LED Anzeige dargestellt.

Abb. 15: Betriebszustand mit leuchtender LED Anzeige

4.1 Inbetriebnahme

Sind alle Anschlüsse und die Installation korrekt durchgeführt, ist das System betriebsbereit und die Versorgungsspannung kann eingeschaltet werden.

4.2 Einstellung des Netzgerätes ES61

Nach dem Einschalten werden am Netzgerät die einzelnen Einstellungen für die einzelnen Parameter über die LED Anzeige angezeigt. Das Gerät ist während dieser Anzeige bereits betriebsbereit. Ein Abwarten der Anzeige bis zur Freigabe der Hochspannung ist nicht notwendig.

Durch die Parameter Entladespannung, Ionen-Balance und Frequenz kann das Entladeergebnis beeinflusst und optimiert werden.

Die Erreichung der optimalen Entladeleistung kann mit einem Elektrofeldmeter durch Messung des zu entladenen Produkts überprüft werden. Grundsätzlich empfehlen wir die Werkseinstellungen dieser Parameter (siehe Kapitel A.3.1 "Parameter Entladung", Seite 98).

Weitere Informationen zu einer möglichst optimalen Einstellung der Hochspannung für die Optimierung der Restladung siehe Kapitel A.4 "Optimierung Restladung", Seite 104.

kV - Entladespannung

Der Sollwert der Entladespannung kann in einem Bereich von 3,5 - 5 kV variiert werden.

Die Ionisationsreichweite kann durch höhere Spannung erweitert werden. Die Entladespannung hat auch Einfluss auf die Ionen-Balance. Durch Verringerung der Entladespannung verbessert sich die Ionen-Balance.

🐨 - Ionen-Balance

Die Ionen-Balance ist zur Optimierung der Restladung für beide Polaritäten einstellbar.

Leuchtet ausschließlich die mittlere LED des Balkens auf, erfolgt keine Anpassung. Leuchten LEDs im linken Bereich auf, ist die Ionen-Balance in die negative Richtung verschoben. Eine Anpassung in die positive Richtung erfolgt, wenn die LEDs im rechten Bereich des Balkens aufleuchten.

Hz - Frequenz Entladung

Die Frequenz kann in einem Bereich von 50 – 200 Hz in mehreren Stufen variiert werden.

Durch Veränderung der Frequenz kann die Restladung des zu entladenden Substrates optimiert werden, siehe Kapitel A.4 "Optimierung Restladung", Seite 104.

Bei Betrieb mit höheren Frequenzen steigt die Belastung des Netzgerätes an (siehe Kapitel 3.3.1 "Maximale aktive Elektrodenlänge und Länge des Hochspannungskabels", Seite 17, Belastungsdiagramme).

Bürste

Der aktuelle Istwert der Verschmutzung des ausgewählten Anschlusses wird angezeigt. Weitere Informationen zur Verschmutzungsüberwachung siehe Kapitel A.5 "Verschmutzungsüberwachung", Seite 106.

4.3 Funktionsüberwachung

Eine einwandfreie Funktion des Gerätes wird über Leuchtdioden (LED) signalisiert. Zusätzlich ist eine Funktionsüberwachung mit den optionalen Störmelde- und Meldeausgängen der I/O-Schnittstelle möglich.

Hinweis!

Störungen werden nicht gespeichert. Eine Unterbrechung der Versorgungsspannung führt automatisch zum Wegfall der Störungsmeldung.

Die nachfolgende Auflistung und Beschreibung der einzeln LEDs der LED-Anzeige beschreibt die Darstellung im Betrieb des Geräts. Bei aktiviertem Setup-Menü (siehe LED SETUP) ist die Darstellung für einzelne LEDs unterschiedlich zu dem beschriebenen Zustand; weitere Informationen siehe Kapitel 4.5.1.10 "Setup-Menü Geräteeinstellungen", Seite 42 und Kapitel 4.5.1.11 "Setup-Menü Performance Control", Seite 50.

•	LED "POWER"	

LED POWER	Zustand
Aus	Spannungsversorgung nicht eingeschaltet oder Fehler in der Spannungsversorgung
Grün Dauerleuchten	Spannungsversorgung eingeschaltet

• LED "HV ON"

LED HV ON	Zustand
Aus	Hochspannung AUS
Grün Dauerleuchten	Hochspannung EIN

• LED "STATUS"

LED STATUS	Zustand
Rot Dauerleuchten	Initialisierung
Rot blinkend	Störung
Rot 1 x blinkend	Systemstörung
Grün Dauerleuchten	Hochspannung EIN
Grün blinkend	Warnung und Hochspannung EIN
Grün 1 x blinkend	Netzgerät im Standby, Hochspannung AUS
Grün 2 x blinkend	Warnung und Hochspannung AUS

• LED "SETUP"

LED SETUP	Zustand
Aus	Gerät in Normalbetrieb Setup-Menü nicht aktiv
Gelb Dauerleuchten	Setup-Menü aktiv
Gelb Dauerblinken	Verschmutzungsüberwachung für aktuell ausgewählten Anschluss deaktiviert

• LED "POLLUTION"

nur Varianten ES61/P siehe Tabelle Pos. 1, Kapitel 1.4 "Varianten", Seite 10

LED POLLUTION	Zustand
Aus	Keine Verschmutzung erkannt
Gelb Dauerleuchten	Verschmutzung eines Verbrauchers erkannt
Gelb 1 x blinkend	Kalibrierung der Verschmutzungs- überwachung aktiv
Gelb blinkend	Warnung der Verschmutzungs- kalibrierung

• LED "DIAGNOSIS"

nur Varianten ES61/_...P siehe Tabelle Pos. 8, Kapitel 1.4 "Varianten", Seite 10

LED DIAG	Zustand
Aus	Kein Diagnosefehler erkannt
Rot Dauerleuchten	Diagnosefehler erkannt

• LED "BUS", LED "LINK"

Anzeige des Status für das jeweilige Busnetzwerk. Bei Varianten ohne Feldbusunterstützung sind diese LEDs dauerhaft aus.

CANopen® (optional)

Anzeige nur für Varianten ES61/_...C siehe Tabelle Pos. 7, Kapitel 1.4 "Varianten", Seite 10

Darstellung der nach CiA 303-3 spezifizierten LED-Ausgaben für den CAN-Bus.

LED BUS	Zustand
Aus	CANopen® nicht initialisiert
Grün Dauerleuchten	CANopen® Device in OPERATIONAL Zustand
Grün 1 x blinkend	CANopen® Device in STOPPED Zustand
Grün langsam blinkend (2,5 Hz)	CANopen® Device in PREOPERATIONAL Zustand
Rot / Grün abwechselnd blinkend (10 Hz)	Automatische Baudratenerkennung oder LSS Service in Bearbeitung
Rot Dauerleuchten	CAN Controller ist ausgeschaltet
Rot 1 x blinkend	Übertragung zu vieler Error Frames über den CAN-Bus
Rot 2 x blinkend	CANopen® Fehlerüberwachungsereignis
Rot 3 x blinkend	CANopen [®] Sync Fehler
Rot / Grün abwechselnd blinkend (unterschiedliche, wech- selnde Leuchtdauer)	Fehler CANopen® Kommunikation, Gerät neu starten

ModbusTCP (optional)

Anzeige nur für Varianten ES61/_...M siehe Tabelle Pos. 7, Kapitel 1.4 "Varianten", Seite 10

LED BUS	Zustand
Aus	Keine IP Adresse vergeben
Grün Dauerleuchten	Modbus Nachrichten korrekt empfangen
Grün blinkend	Warten auf 1. Modbus Nachricht
Rot Dauerleuchten	Ungültige IP Adresse

LED LINK	Zustand
Aus	Keine Verbindung
Grün Dauerleuchten	Verbindung 100 Mbit/s erkannt
Grün blinkend	Datenaustausch 100 Mbit/s
Gelb Dauerleuchten	Verbindung 10 Mbit/s erkannt
Gelb blinkend	Datenaustausch 10 Mbit/s

• LED-BALKEN

Optische Darstellung der Istwerte der Entladespannung, der Verschmutzung des ausgewählten Anschlusses bzw. des Parameterwerts der Ionen-Balance oder der Entladefrequenz.

Grundsätzlich ist die Anzeige in 3 Teile unterteilt. Auf der linken Seite befinden sich die LEDs zur Visualisierung des aktuell ausgewählten Darstellungszustandes; im rechten Bereich die entsprechenden LEDs zur Anzeige des ausgewählten Anschlusses. Dieser Bereich ist nur im Anzeigemodus für die Verschmutzung eines Anschlusses genutzt.

Zwischen den beiden Anzeigen für den ausgewählten Darstellungszustand befindet sich der LED-Balken. Dieser ist in 11 Schritten zur Darstellung des jeweiligen Parameters oder Istwerts unterteilt (LED 1 links bis LED 11 rechts).

Nachfolgend sind die einzelnen Zustände des LED-Balkens zur Anzeige des entsprechenden Parameters oder Istwerts beschrieben.

LED Bürste Grün Dauerleuchten

nur für Varianten ES61/P, siehe Tabelle Pos. 1, Kapitel 1.4 "Varianten", Seite 10

- LED 1 Gelb Dauerleuchten Anzeige der prozentualen Verschmutzung Anschluss 1
- LED 2 Gelb Dauerleuchten Anzeige der prozentualen Verschmutzung Anschluss 2
- LED 3 Gelb Dauerleuchten Anzeige der prozentualen Verschmutzung Anschluss 3
- LED 4 Gelb Dauerleuchten Anzeige der prozentualen Verschmutzung Anschluss 4

LED kV Grün Dauerleuchten

Anzeige des aktuellen Istwerts der Entladespannung. Bei Betätigung der Taste + bzw. – wechselt die Anzeige kurzzeitig in die Darstellung des eingestellten Parameterwerts der Entladespannung; weitere Informationen siehe Kapitel 4.5.1 "Bedienung Folientastatur", Seite 38.

• LED Hz

Grün Dauerleuchten

Darstellung der parametrierten Frequenz der Entladespannung

- 1. LED Frequenz Entladespannung 50 Hz
- 2. LED Frequenz Entladespannung 62,5 Hz
- 3. LED Frequenz Entladespannung 75 Hz
- 4. LED Frequenz Entladespannung 87,5 Hz
- 5. LED Frequenz Entladespannung 100 Hz
- 6. LED Frequenz Entladespannung 125 Hz
- 7. LED Frequenz Entladespannung 150 Hz
- 8. LED Frequenz Entladespannung 175 Hz
- 9. LED Frequenz Entladespannung 200 Hz

LED Balance

Grün Dauerleuchten

Anzeige des eingestellten Parameterwertes der Ionen-Balance. Die Mitte des LED-Balkens stellt den Ausgangspunkt der Darstellung dar. Je nach Einstellung leuchten die LEDs rechts bzw. links des Mittelpunkts.

Störmeldeausgang (optional)

nur für Varianten ES61/_...C und ES61/_...R, siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10

Anzeige der Funktion	Zustand
0 V	Fehler bzw. das Netzgerät ist nicht betriebsbereit
24 V	Spannungsversorgung eingeschaltet, kein Fehler aufgetreten

Meldeausgang (optional)

nur für Varianten ES61/_...C und ES61/_...R, siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10

Der Meldeausgang kann zur Signalisierung unterschiedlicher interner Gerätezustände in Abhängigkeit des eingestellten Modus genutzt werden; weitere Informationen siehe Kapitel A.3.3 "Parameter Allgemein", Seite 101.

Modus "Hochspannung aktiv"

Anzeige der Funktion	Zustand
0 V	Hochspannung AUS
24 V	Hochspannung EIN

Modus "Warnung"

Anzeige der Funktion	Zustand
0 V	Keine Warnung aufgetreten
24 V	Warnung aufgetreten

Modus "Verschmutzung"

Anzeige der Funktion	Zustand
0 V	Keine Verschmutzung eines Verbrauchers erkannt
24 V	Verschmutzung erkannt

4.4 Freigabe der Hochspannung

Zur Freigabe der Hochspannung stehen mehrere Optionen zur Verfügung. Diese können sich je nach Variante des Gerätes unterscheiden.

Achtung!

Werden elektrisch leitfähige bzw. leitfähig beschichtete Substrate (z.B. Metallfolien bzw. Metallverbundstoffe) verarbeitet, so ist die Freigabe der Hochspannung zu sperren. Die Entladung des Substrats erfolgt über den passiven Betrieb der angeschlossenen Elektroden.

Die Optionen der Software-Freigabe für die Hochspannung sind in allen Geräten verfügbar; die Optionen der Hardware-Freigabe ausschließlich für die Varianten ES61/_...C und ES61/_...R, siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10.

Die Signale "Freigabe 1" und "Freigabe 2" sind intern logisch miteinander verknüpft. Bei dem Einsatz des Geräts ohne Anforderungen an die funktionale Sicherheit nach DIN EN 13849 ist der Anschluss nur eines der beiden Signale zur Freischaltung der Hochspannung notwendig.

Grundsätzlich können die Optionen für die Hardware- und Software-Freigabe unabhängig voneinander genutzt bzw. kombiniert werden.

Beim Einsatz des Netzgerätes im Zusammenhang mit der Funktionalen Sicherheit nach DIN EN 13849 ist das redundante Schalten der Freigabe notwendig. Hierzu sind die beiden Signale "Freigabe 1" und "Freigabe 2" getrennt voneinander zu schalten.

Optionen Software-Freigabe

Automatisch

Software-Freigabe erfolgt automatisch nach dem Hochfahren des Netzgerätes.

Integrierte Bedienung

Die Freigabe wird direkt über einen Tastendruck (ON/OFF) der integrierten Bedienung aktiviert bzw. deaktiviert.

Bei Betrieb der Netzgeräte mit dem Visualisierungssystem ECC wirkt eine dort für das Netzgerät gesetzte Freigabe vorrangig. Eine Deaktivierung am Netzgerät ist nicht möglich, wenn die Freigabe gleichzeitig an dem Visualisierungssystem ECC gesetzt wurde. Die Deaktivierung des Netzgerätes muss über das Visualisierungssystem ECC erfolgen.

CANopen®

Über das CANopen® -Bus übertragende Kommando kann die Freigabe gesetzt bzw. gelöscht werden.

Feldbus Ethernet basiert
 Die Freigabe ist über den Ethernet basierten Feldbus
 (z.B. ModbusTCP) steuerbar.

Für weitere Informationen zur Konfiguration der einzelnen Freigabeoptionen siehe Kapitel A.3.3 "Parameter Allgemein", Seite 101.

4.5 Integrierte Bedienelemente

Einstellungen am Netzgerät erfolgen über die integrierten Bedienelemente. Das Quittieren von Fehler- bzw. Warnungsmeldungen ist direkt am Gerät möglich.

Abhängig von der Variante des Netzgerätes erfolgt die Bedienung über die integrierte Folientastatur oder den Touchscreen.

4.5.1 Bedienung Folientastatur

nur für Varianten ES61/_...K, siehe Tabelle Pos. 5, Kapitel 1.4 "Varianten", Seite 10

Über die Folientastatur erfolgen die Einstellung einiger Parameter, des Sollwerts und das Quittieren von Fehler- und Warnungsmeldungen.

Hinweis:

Die Folientastatur kann durch das Setzen des Parameters für die Tastensperre deaktiviert werden. Die Tastensperre wird automatisch nach dem Erkennen eines Ausfalls der Feldbus-Kommunikation wieder aufgehoben, so dass Einstellungen am Gerät mit der Folientastatur möglich sind, siehe Kapitel A.3.3 "Parameter Allgemein", Seite 101.

Abb. 16: Folientastatur

4.5.1.1 Beschreibung der Tasten

- Taste + Taste zur Veränderung der Einstellung
- Taste -Taste zur Veränderung der Einstellung
- Taste kV / Hz / Bürste / Balance Umschaltung der Anzeige des LED-Balkens
- Taste Setup Aktivierung des Setup-Menüs
- Taste OK Bestätigung der Einstellung
- Taste ON/OFF

Setzen bzw. Löschen der Software-Freigabe für die Hochspannungserzeugung

4.5.1.2 Umschaltung der Balkendarstellung

Durch Betätigen der Taste kV / Hz / Bürste / Balance wechselt die Ansicht der aktuellen Balkendarstellung. Die aktuell ausgewählte Anzeige wird durch das dauerhafte Leuchten der entsprechenden LED dargestellt. Im Anzeigemodus für die Verschmutzung (LED-Bürste leuchtet dauerhaft) ist weiterhin ein Wechsel der Anzeige für die einzelne Anschlüsse möglich. Hierzu sind die +/- Tasten zu nutzen.

Der Wechsel erfolgt sowohl bei jedem erneuten Tastendruck als auch beim Halten der Taste und ist nur bei deaktiviertem Setup-Menü möglich.

4.5.1.3 Einstellung Sollwert Entladespannung

Bei ausgewählten Anzeigemodus für die Entladespannung (LED kV leuchtet dauerhaft) ist die Einstellung des Sollwerts der Entladespannung durch das Betätigen der +/- Tasten möglich. Die Anzeige des LED Balkens wechselt direkt nach Betätigung der Taste von der Darstellung des Istwerts in die Darstellung des Sollwerts.

Der Sollwert für die Entladespannung kann im Bereich von 3,5 kV bis 5,0 kV in 100 V Schritten geändert werden.

Nach erfolgter Einstellung wird der aktuelle Sollwert automatisch abgespeichert. Die Einstellung des Sollwerts der Entladespannung ist nur bei deaktiviertem Setup-Menü möglich. Für weitere Informationen zur Einstellung des Sollwerts beachten Sie bitte Kapitel A.4 "Optimierung Restladung", Seite 104.

Ist die Einstellung zur dauerhaften Aktivierung des Referenzpunktes ausgewählt, kann der Sollwert der Entladespannung nicht über die Folientastatur verändert werden. Für weitere Informationen siehe Kapitel 4.5.1.11.2 "Aktivierung Referenzpunkt", Seite 52.

4.5.1.4 Einstellung Frequenz Entladespannung

Die Einstellung der Frequenz der Entladespannung ist bei Auswahl des Anzeigemodus für die Frequenz (LED Hz leuchtet dauerhaft) mit den +/- Tasten des LED-Balkens möglich. Die Einstellung der Frequenz erfolgt in Stufen in einem Bereich von 50 - 200 Hz.

1. LED - Frequenz Entladespannung 50,0 Hz

2. LED - Frequenz Entladespannung 62,5 Hz

3. LED - Frequenz Entladespannung 75,0 Hz

4. LED - Frequenz Entladespannung 87,5 Hz

5. LED - Frequenz Entladespannung 100,0 Hz

6. LED - Frequenz Entladespannung 125,0 Hz

7. LED - Frequenz Entladespannung 150,0 Hz

- 8. LED Frequenz Entladespannung 175,0 Hz
- 9. LED Frequenz Entladespannung 200,0 Hz

Nach erfolgter Einstellung wird die aktuelle Frequenz automatisch abgespeichert. Die Einstellung der Frequenz der Entladespannung ist nur bei deaktiviertem Setup-Menü möglich.

Zur Einstellung der Frequenz in Zusammenhang mit der Optimierung der Restladung des zu entladenen Substrats beachten Sie bitte Kapitel A.4 "Optimierung Restladung", Seite 104.

Ist die Einstellung zur dauerhaften Aktivierung des Referenzpunktes ausgewählt, kann die Frequenz nicht über die Folientastatur verändert werden. Für weitere Informationen siehe Kapitel 4.5.1.11.2 "Aktivierung Referenzpunkt", Seite 52.

4.5.1.5 Einstellung lonen-Balance

Ist der Anzeigemodus Balance (LED Balance leuchtet dauerhaft) ausgewählt, ist die Einstellung der Ionen-Balance durch Betätigen der +/- Tasten möglich.

Die Ionen-Balance ist sowohl in die positive als auch in die negative Richtung einstellbar.

Leuchtet ausschließlich die mittlere LED des Balkens auf, erfolgt keine Anpassung. Leuchten LEDs im linken Bereich auf, ist die Ionen-Balance in die negative Richtung verschoben. Eine Anpassung in die positive Richtung erfolgt, wenn die LEDs im rechten Bereich des Balkens aufleuchten.

Nach erfolgter Einstellung wird die aktuelle Ionen-Balance automatisch abgespeichert. Die Einstellung der Ionen-Balance ist nur bei deaktiviertem Setup-Menü möglich.

Die Einstellung der Ionen-Balance dient zur Anpassung der Restladung. Für weitere Informationen zur Einstellung beachten Sie bitte Kapitel A.4 "Optimierung Restladung", Seite 104.

Ist die Einstellung zur dauerhaften Aktivierung des Referenzpunkts ausgewählt, ist eine Veränderung der Ionen-Balance über die Folientastatur nicht möglich. Für weitere Informationen siehe Kapitel 4.5.1.11.2 "Aktivierung Referenzpunkt", Seite 52.

4.5.1.6 Setzen und Löschen der Software-Freigabe

Durch Betätigung der ON/OFF Taste wird die Software-Freigabe gesetzt bzw. gelöscht. Hierzu muss die Einstellung "Freigabe über integrierte Bedienelemente" aktiviert sein (Standardeinstellung).

4.5.1.7 Speichern der Parameter

Zum Speichern des gesamten Parametersatzes ist die OK Taste bis zum zweimaligen Aufblinken der LEDs zu halten.

4.5.1.8 Laden der Werkseinstellungen

Zum Laden der Werkseinstellungen sind die Tasten – und + und OK so lange gedrückt zu halten bis die LEDs zweimal aufblinken.

4.5.1.9 Quittieren Fehler- bzw. Warnungsmeldungen

Fehler- und Warnungsmeldungen sind über eine gemeinsame Tastenkombination quittierbar. Hierzu sind die drei Tasten Setup, OK und kV / Hz / Bürste / Balance so lange zu halten bis die LEDs zweimal aufblinken. Die Quittierung erfolgt nach einer internen Überprüfung des Systems. Die erfolgreiche Quittierung wird über die LED "Status" dargestellt. Sind mehrere Fehler bzw. Warnungen aufgetreten, ist das Quittieren der Meldung mehrfach vorzunehmen.

4.5.1.10 Setup-Menü Geräteeinstellungen

Das Setup-Menü ist grundsätzlich in zwei Teile aufgeteilt. Zum einen ist ein allgemeines Setup-Menü für die Geräteeinstellungen verfügbar. Des weiteren ist für die Varianten ES61/P ein Setup-Menü für die Einstellung der Performance Control (siehe Kapitel 4.5.1.11 "Setup-Menü Performance Control", Seite 50)des jeweiligen Anschlusses verfügbar.

Folgende Einstellungen sind mit dem allgemeinen Setup-Menü für die Geräteeinstellungen möglich:

- Option Software-Freigabe Einstellung der Optionen für die Software-Freigabe
- Option Hardware-Freigabe
 nur für Varianten ES61/_...C und ES61/_...R,

siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10

Aktivierung bzw. Deaktivierung der Hardware-Freigabe für die Hochspanungserzeugung

Modus Meldeausgang

nur für Varianten ES61/_...C und ES61/_...R, siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10

Auswahl des Modus zur Signalisierung des Gerätezustandes mittels des Meldeausgangs

Modus Sensoreingang

nur für Varianten ES61/_...C und ES61/_...S, siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10

Auswahl des Modus des Sensoreingangs

CANopen® Knotenadresse

nur für Varianten ES61/_...C siehe Tabelle Pos. 7, Kapitel 1.4 "Varianten", Seite 10 Einstellung der Knotenadresse des Geräts für das CANopen®-Netzwerk

CANopen® Baudrate

nur für Varianten ES61/_...C siehe Tabelle Pos. 7, Kapitel 1.4 "Varianten", Seite 10

Auswahl der Baudrate des Geräts für das CANopen®-Netzwerk bzw. Deaktivierung der CANopen® Kommunikation

Das Setup-Menü wird bei ausgewählter Anzeige der Entladespannung, Frequenz bzw. Balance des LED-Balkens durch Halten der Taste "Setup" gestartet. Diese ist so lange zu halten bis die LED "SETUP" dauerhaft aufleuchtet. Mit der Taste OK sind die einzelnen vorgenommenen Einstellungen zu bestätigen. Das Menü wechselt danach umgehend zur nächsten Einstellung. Das Menü kann nicht abgebrochen und muss jeweils bis zum Ende durchgeführt werden. Beim Verlassen des Menüs erfolgt ein automatisches Speichern der vorgenommen Einstellungen.

Mit den rechts des LED-Balken angeordneten LEDs wird der aktuelle Menüpunkt des Setup-Menüs dargestellt. Die Darstellung der Einstellung erfolgt mittels des LED-Balkens.

4.5.1.10.1 Setup-Menü starten

Zum Starten des Setup-Menüs zunächst den Anzeigemodus Entladespannung, Frequenz bzw. Balance des LED-Balkens auswählen. Daraufhin die Taste Setup so lange halten bis die LED "SETUP" dauerhaft aufleuchtet. Mit Betätigung der Taste OK gelangen Sie zum Menüpunkt für die Option Software-Freigabe.

300444

Abb. 17: Setup-Menü starten mit leuchtender LED SETUP

4.5.1.10.2 Option Software-Freigabe

Die 1. Konfigurations-LED signalisiert die Auswahl des Menüpunktes für die Einstellung der Option der Software-Freigabe für die Hochspannungserzeugung. Der LED-Balken stellt die aktuelle Einstellung des Parameters dar. Mit + und – Taste ist die Einstellung der Option der Software-Freigabe veränderbar. Mit Betätigung der Taste OK wird die Einstellung bestätigt.

Abb. 18: Menüpunkt: "Option Software-Freigabe " mit leuchtender 1. Konfigurations-LED

- LED 1: Software-Freigabe deaktiviert Die Hochspannungsfreigabe erfolgt ausschließlich durch das externe Freigabesignal über die I/O-Schnittstelle.
- LED 2: Automatische Software-Freigabe
- LED 3: Freigabe integrierte Bedienelemente Folientastatur Taste "ON/OFF"
- LED 4: Freigabe CANopen®-Schnittstelle
- LED 5: Freigabe Feldbus Ethernet basierte Schnittstelle

B00445

4.5.1.10.3 Option Hardware-Freigabe

nur für Varianten ES61/_...C und ES61/_...R, siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10

Mit der 2. Konfigurations-LED ist die Auswahl des Menüpunkts zur Einstellung der Option für die Hardware-Freigabe der Hochspannungserzeugung signalisiert. Der LED-Balken stellt die aktuelle Einstellung der Hardware-Freigabe dar. Die Einstellung ist durch die Tasten + und – anpassbar. Die Taste OK bestätigt die Einstellung und der nächste Menüpunkt wird daraufhin ausgeführt.

- LED 1: Hardware-Freigabe deaktiviert
- LED 2: Hardware-Freigabe aktiviert

B00446

Abb. 19: Menüpunkt "Option Hardware-Freigabe " mit leuchtender 2. Konfigurations-LED

4.5.1.10.4 Modus Meldeausgang

nur für Varianten ES61/_...C und ES61/_...R, siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10

Der Menüpunkt zur Einstellung des Modus für den Meldeausgang ist durch die 3. Konfigurations-LED signalisiert. Der LED-Balken stellt die aktuelle Einstellung des Parameters dar. Zur Veränderung der Einstellung ist die Taste + bzw. – zu betätigen. Die ausgewählte Einstellung ist mit der Taste OK zu bestätigen.

- LED 1: Modus Meldeausgang Hochspannung aktiv
- LED 2: Modus Meldeausgang Warnung
- LED 3: Modus Meldeausgang Verschmutzung

Abb. 20: Menüpunkt "Modus Meldeausgang" mit leuchtender 3. Konfigurations-LED

4.5.1.10.5 Modus Sensoreingang

nur für Varianten ES61/_...C und ES61/_...R, siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10

Die 4. Konfigurations-LED signalisiert die Auswahl des Menüpunkts zur Einstellung des Modus des Sensoreingangs. Der aktuell ausgewählte Modus des Sensoreingangs ist mittels des LED-Balkens dargestellt. Die Tasten + und – sind zur Einstellung des Modus zu nutzen. Durch Betätigung der Taste OK ist die Einstellung zu bestätigen. Bei Gerätevarianten mit CANopen®-Unterstützung wechselt das Setup-Menü zu den Einstellungen für das CANopen®-Netzwerk. Bei allen weiteren Varianten ist dies der letzte Menüpunkt und das Steup-Menü ist durch das erneute Betätigen der OK Taste zu beenden.

LED 1: Modus Sensoreingang Aus

LED 2: Modus Sensoreingang Drehzahlsensor

electrostatic innovations

B00448

Abb. 21: Menüpunkt "Modus Sensoreingang" mit leuchtender 4. Konfigurations-LED

4.5.1.10.6 CANopen®-Knotenadresse

nur für Varianten ES61/_...C, siehe Tabelle Pos. 7, Kapitel 1.4 "Varianten", Seite 10

Die Einstellung der CANopen®-Knotenadresse erfolgt in zwei Schritten. Zunächst wird die Zehnerstelle der Knotenadresse im Bereich von 0 – 9 eingestellt. Im zweiten Schritt die Einerstelle im Bereich von 0 – 9. Die Auswahl des Menüpunkts ist durch das grüne Dauerleuchten der LED "BUS" signalisiert. Weiterhin leuchtet die 1. Konfigurations-LED für die Einstellung der Zehnerstelle bzw. der 2. Konfigurations-LED zur Einstellung der Einerstelle auf. Die entsprechend ausgewählte Position des LED-Balkens stellt die Einstellung dar. Mit den Tasten + und – ist die Einstellung veränderbar. Die Einstellung wird durch das Betätigen der Taste OK jeweils bestätigt.

Abb. 22: Menüpunkt "Zehnerstelle CANopen®-Knotenadresse" mit leuchtender LED "BUS" und 1. Konfigurations-LED

Abb. 23: Menüpunkt "Einerstelle CANopen®-Knotenadresse" mit leuchtender LED "BUS" und 2. Konfigurations-LED

4.5.1.10.7 CANopen® Baudrate

nur für Varianten ES61/_...C, siehe Tabelle Pos. 7, Kapitel 1.4 "Varianten", Seite 10

Durch das dauerhafte grüne Aufleuchten der LED "BUS" und der 3. Konfigurations-LED ist die Auswahl diesen Menüpunkts signalisiert. Die aktuell ausgewählte Einstellung ist im LED-Balken mit der entsprechende LED dargestellt. Die Tasten + und – sind zur Veränderung der Einstellung zu nutzen. Zum Abschluss ist die Auswahl mit der Taste OK zu bestätigen.

Abb. 24: Menüpunkt "CANopen®-Baudrate" mit leuchtender LED "BUS" und 3. Konfigurations-LED

- LED 1: 1000 kBit/s
- LED 2: 800 kBit/s
- LED 3: 500 kBit/s
- LED 4: 250 kBit/s
- LED 5: 125 kBit/s
- LED 6: 50 kBit/s
- LED 7: 25 kBit/s
- LED 8: 10 kBit/s
- LED 9: Deaktivierung CANopen®-Kommunikation

4.5.1.10.8 Setup beenden

Abschließend ist das Setup-Menü durch Betätigen der Taste OK zu beenden. Alle Parameter werden nach einer internen Überprüfung auf ihre jeweilige Minimal- und Maximalwerte eingestellt. Danach erfolgt eine Speicherung des kompletten Parametersatzes. Die LED-Anzeige blinkt zweifach auf und wechselt danach in den normalen Anzeigemodus zurück.

Wurden Einstellungen der CANopen®-Knotenadresse und der Baudrate vorgenommen, ist ein Neustart des Netzgerätes notwendig. Alle anderen Einstellungen erfolgen unmittelbar nach Beendigung des Setup-Menüs.

B00451

4.5.1.11 Setup-Menü Performance Control

nur für Varianten ES61/P siehe Tabelle Pos. 1, Kapitel 1.4 "Varianten", Seite 10

Das Setup-Menü ist grundsätzlich in zwei Teile aufgeteilt. Zum einen ist ein allgemeines Setup-Menü für die Geräteeinstellungen (siehe Kapitel 4.5.1.10 "Setup-Menü Geräteeinstellungen", Seite 42) verfügbar. Des weiteren ist für die Varianten ES61/P ein Setup-Menü für die Einstellung der Performance Control des jeweiligen Hochspannungsanschlusses verfügbar.

Die Gerätevarianten ES61/P unterstützen das Setup-Menü zur Einstellung der Performance Control der einzelnen Anschlüsse des Netzgerätes. Folgende Einstellungen sind mit diesem Setup-Menü möglich:

Aktivierung Referenzpunkt

Einstellung der Optionen zur Aktivierung des Referenzpunktes zur Durchführung der Performance Control. Dies Einstellung gilt für alle Anschlüsse, siehe Kapitel A.5 "Verschmutzungsüberwachung", Seite 106.

- Verschmutzungsüberwachung
 Einstellung der Verschmutzungsüberwachung des ausgewählten Anschlusses
- Aktive Länge Verbraucher Konfiguration der aktiven Länge des angeschlossenen Verbrauchers des jeweiligen Anschlusses
- Kabellänge
 Einstellung der angeschlossene Kabellänge des ausgewählten Anschlusses

Zum Starten dieses Setup-Menüs ist zunächst der entsprechende Anschluss zur Anzeige des LED-Balkens auszuwählen. Hierzu die Taste kV / HZ / Bürste / Balance so lange zu betätigen bis die LED "Bürste" aufleuchtet. Daraufhin ist der entsprechende Anschluss durch Betätigung der Taste + und Taste – auszuwählen. Das Setup-Menü wird durch das Halten der Taste Setup gestartet. Diese ist so lange zu halten, bis die LED "SETUP" dauerhaft aufleuchtet. Mit der Taste OK sind die einzelnen vorgenommenen Einstellungen zu bestätigen. Das Menü wechselt danach umgehend zur nächsten Einstellung.

Das Menü kann nicht abgebrochen und muss jeweils bis zum Ende durchgeführt werden. Beim Verlassen des Menüs erfolgt ein automatisches Speichern der vorgenommen Einstellungen.

Zur optimalen Einstellung und Nutzung der Performance Control ist es empfehlenswert, die Einstellungen bei deaktivierter Hochspannung vorzunehmen. Ebenso sollte das Setup-Menü nach Austausch des angeschlossenen Verbrauchers erneut durchgeführt werden.

Mit den links des LED-Balkens angeordneten LEDs wird der aktuelle Menüpunkt des Setup-Menüs dargestellt. Die Darstellung der Einstellung erfolgt mittels des LED-Balkens. Die rechts des LED-Balkens angeordneten LEDs dienen zur Anzeige des aktuell ausgewählten Anschlusses zur Durchführung des Setup-Menüs.

4.5.1.11.1 Setup-Menü starten

Zum Starten des Setup-Menüs zunächst den Anzeigemodus Verschmutzung (LED Bürste) des zu konfigurierenden Anschlusses auswählen. Daraufhin die Taste Setup so lange halten bis die LED "SETUP" dauerhaft aufleuchtet. Mit Betätigung der Taste OK gelangen Sie zum Menüpunkt für die Option "Aktivierung Referenzpunkt".

b00452

Abb. 25: Setup-Menü starten mit leuchtender LED "SETUP"

4.5.1.11.2 Aktivierung Referenzpunkt

Die LED "Bürste" signalisiert die Auswahl des Menüpunktes für die Einstellung der Aktivierung des Referenzpunkts. Weiterhin leuchten alle vier Anschluss-LEDs auf. Der LED-Balken stellt die aktuelle Einstellung des Parameters dar. Mit + und – Taste ist die Einstellung der Option der Software-Freigabe veränderbar. Zur Änderung der Einstellung die Tasten + bzw. – betätigen. Mit Betätigung der Taste OK wird die Einstellung bestätigt.

Die Einstellung zur Aktivierung des Referenzpunktes stellt eine allgemeine Einstellung dar. Diese ist nicht für jeden Anschluss individuell einstellbar. Für weitere Informationen zur Einstellung der Aktivierung des Referenzpunktes und der Verschmutzungsüberwachung siehe Kapitel A.5 "Verschmutzungsüberwachung", Seite 106.

Abb. 26: Menüpunkt "Aktivierung Referenzpunkt" mit leuchtender LED "Bürste" und alle 4 Anschluss-LEDs

b00453

- LED 1: Aktivierung Referenzpunkt bei Hochspannungsfreigabe
- LED 2: Referenzpunkt dauerhaft aktiviert
- LED 3: Zyklische Aktivierung, Zykluszeit 1 Minute
- LED 4: Zyklische Aktivierung, Zykluszeit 10 Minuten
- LED 5: Zyklische Aktivierung, Zykluszeit 30 Minuten
- LED 6: Zyklische Aktivierung, Zykluszeit 60 Minuten
- LED 7: Aktivierung des Referenzpunktes mittels externer Anfrage über optionale Feldbus-Schnittstellen.

Für weitere Informationen beachten Sie bitte die entsprechende Protokollbeschreibung.

Hinweis:

Der Referenzpunkt bezieht sich auf eine fest hinterlegte Einstellung der Entladespannung (5 kV, 50 Hz, 0 %-Ionenbalance), d.h. dass bei einem Betrieb mit dauerhaft betriebenem Referenzpunkt diese Werte durch den Benutzer nicht geändert werden können.

Ist eine Anpassung der Entladespannung, -frequenz und/oder der Ionenbalance erforderlich, ist eine andere Einstellung für die Aktivierung des Referenzpunktes zu wählen.

4.5.1.11.3 Anschluss Verschmutzungsüberwachung

Der Menüpunkt "Anschluss Verschmutzungsüberwachung" ist durch das Aufleuchten der LED "kV" signalisiert. Ebenso leuchtet die entsprechende Anschluss-LED zur Verdeutlichung auf, welcher Anschluss zur Einstellung ausgewählt ist. Die aktuelle Einstellung zeigt die leuchtende LED des LED-Balkens. Mit den Tasten + und – ist die Einstellung anpassbar. Zur Bestätigung der Einstellung ist die Taste OK zu betätigen.

Abb. 27: Menüpunkt "Anschluss Verschmutzungsüberwachung" mit leuchtender LED "kV" und 2. Anschluss-LED

B00454

- LED 1: Verschmutzungsüberwachung deaktiviert
- LED 2: Verschmutzungsüberwachung aktiviert
- LED 3: Kalibrierung der Verschmutzungsüberwachung

Bei einer Neuinstallation und direkter Aktivierung der Verschmutzungsüberwachung wird automatisch die Kalibrierung ausgewählt und erfolgt einmalig beim nächsten Einschalten der Hochspannung.

Ist zu einem späteren Zeitpunkt eine neue Kalibrierung notwendig (z.B. Anschluss eines neuen Verbrauchers), kann dies wie oben beschrieben (LED 3) ausgewählt werden. Dabei ist unbedingt auf die korrekte Auswahl des entsprechenden Anschlusses zu achten.

Nach Durchführung der Kalibrierung wird automatisch die Verschmutzungsüberwachung aktiviert.

Die Kalibrierung mit verschmutzten Verbrauchern führt zu einer fehlerhaften Auswertung der Verschmutzungsüberwachung, eine vorherige Reinigung des Verbrauchers ist zwingend erforderlich.

4.5.1.11.4 Aktive Länge Verbraucher

Die LED "Hz" signalisiert die Auswahl des Menüpunktes zur Einstellung der aktiven Länge des angeschlossenen Verbrauchers des ausgewählten Anschlusses. Die entsprechende Anschluss-LED leuchtet ebenfalls links des LED-Balkens auf. Der LED-Balken stellt die aktuelle Einstellung dar. Die Tasten + und – verändern die Einstellung. Die aktive Länge des Verbrauchers ist nur in Bereichen einstellbar. Bitte den entsprechenden Bereich für den angeschlossener Verbraucher für eine möglichst optimale Verschmutzungsüberwachung auswählen. Durch Betätigung der Taste OK wird die Einstellung bestätigt.

Abb. 28: Menüpunkt "Aktive Länge Verbraucher" mit leuchtender LED "Hz" und 3. Anschluss-LED

LED 1: Aktive Länge bis 100 mm LED 2: Aktive Länge von 100 mm bis 200 mm LED 3: Aktive Länge von 200 mm bis 300 mm LED 4: Aktive Länge von 300 mm bis 500 mm LED 5: Aktive Länge von 500 mm bis 750 mm LED 6: Aktive Länge von 750 mm bis 1000 mm LED 7: Aktive Länge von 1000 mm bis 1250 mm LED 8: Aktive Länge von 1250 mm bis 1500 mm LED 9: Aktive Länge von 1500 mm bis 2000 mm LED 10: Aktive Länge von 2000 mm bis 2500 mm LED 11: Aktive Länge größer 2500 mm

300455

4.5.1.11.5 Kabellänge

Der Menüpunkt zur Einstellung der angeschlossenen Kabellänge des jeweiligen Anschlusses wird durch das Leuchten der LED Balance und der entsprechenden Anschluss-LED signalisiert. Der LED-Balken stellt die aktuelle Einstellung dar. Mit den Tasten + und – ist diese veränderbar. Die Einstellung der Kabellänge ist in den unten beschriebenen Bereichen möglich. Bitte den passenden Bereich für die angeschlossene Kabellänge auswählen. Die Taste OK bestätigt diese Einstellung.

- LED 1: Kabellänge bis 2 m
- LED 2: Kabellänge im Bereich von 2 m bis 4 m
- LED 3: Kabellänge im Bereich von 4 m bis 6 m
- LED 4: Kabellänge im Bereich von 6 m bis 8 m
- LED 5: Kabellänge im Bereich von 8 m bis 10 m
- LED 6: Kabellänge im Bereich von 10 m bis 12 m
- LED 7: Kabellänge im Bereich von 12 m bis 14 m
- LED 8: Kabellänge im Bereich von 14 m bis 16 m
- LED 9: Kabellänge im Bereich von 16 m bis 18 m
- LED 10: Kabellänge im Bereich von 18 m bis 20 m
- LED 11: Kabellänge größer 20 m

4.5.1.11.6 Setup beenden

Abschließend ist das Setup-Menü durch Betätigen der Taste OK zu beenden. Alle Parameter werden nach einer internen Überprüfung auf ihre jeweilige Minimal- und Maximalwerte eingestellt. Danach erfolgt eine Speicherung des kompletten Parametersatzes. Die LED-Anzeige blinkt zweifach auf und wechselt danach in den normalen Anzeigemodus zurück.

Abb. 29: Menüpunkt "Kabellänge" mit leuchtender LED "Balance" und 1. Anschluss-LED

b00456

4.5.2 Bedienung Display

nur für Varianten ES61/_...D,

siehe Tabelle Pos. 5, Kapitel 1.4 "Varianten", Seite 10

Nachfolgend sind die Bedienmöglichkeiten des im Netzgerät integrierten Displays dargestellt:

Abb. 30: Übersicht Hauptmenü

- 1 Freigabe Freigabe des Netzgerätes, Einstellung der Hochspannung
- 2 Konfiguration Einstellungen zur Konfiguration der Darstellung
- 3 Voreinstellung Speichern und Laden der Voreinstellungen zur Parametrierung des Netzgerätes
- 4 Hauptseite Wechsel zur Hauptseite
- 5 Meldungsübersicht Darstellung der aktuell aufgetretenen Fehler- bzw. Warnungsmeldungen
- 6 Status Darstellung der Statusinformationen des Netzgerätes
- 7 Parameter Darstellung der Parameterdaten zur Einstellung des Netzgerätes
- 8 Istwerte Übersicht aller verfügbarer Istwerte des Netzgerätes
- 9 Allgemein Anzeige allgemeiner Geräteinformationen

- 10 Versionsnummer mit aktuellem Zugriffsleve
 - V Betrachter
 - U Benutzer
 - SU Super Benutzer

4.5.2.1 Freigabe

Button "Freigabe" drücken.

Zum Sperren bzw. Setzen der Hochspannungsfreigabe ist der Schalter in der linken unteren Ecke in die jeweilige Position zu schieben. Eine mögliche Passwortabfrage ist mit dem korrektem Passwort zu bestätigen.

4.5.2.2 Konfiguration

Button "Konfiguration" drücken.

Die Ansicht der einzelnen Auswahloptionen für die Konfigurationsseite variiert in Abhängigkeit des aktuellen Zugrifflevels. Die komplette Übersicht ist nur für den Zugriff als Super Benutzer dargestellt. Für weitere Informationen siehe Kapitel 4.5.2.2.1 "ECC Benutzer", Seite 58.

BA-de-2089-2405_ES61

Abb. 31: Übersicht

Konfiguration

4.5.2.2.1 ECC Benutzer

Button "ECC Benutzer" drücken.

Dialog zur Änderung des Passworts und An- bzw. Abmeldung des Benutzers.

Abb. 32: Passwort

Zum Ändern des Passworts das aktuelle Passwort im Feld "Aktuelles Passwort" eingeben; neues Passwort im Feld "Neues Passwort" und im Feld "Bestätigung Passwort" eingeben, mit "Passwort ändern" neues Passwort aktivieren, Rückmeldung abwarten.

Es stehen drei Passwortebenen zur Verfügung:

- Betrachter
 Passwort: 0001
- Benutzer
 Passwort: 2819
- Super Benutzer
- Passwort: 3517

4.5.2.2.2 Zugriffsverwaltung

Button "Zugriffsverwaltung" drücken.

Dialog zur Einstellung und Konfiguration der einzelnen Parameter für den jeweiligen Benutzerlevel.

In der Auswahlliste des jeweiligen Parameters das Zugriffslevel auswählen und mit OK bestätigen. Durch Betätigen der Taste "Abbruch" werden Änderungen nicht übernommen und die zuletzt gültigen Einstellungen sind aktiv.

Abb. 33:

4.5.2.2.3 Einstellungen

Einstellungen für Sprache, Standardzugriffslevel, Darstellung Spannungs- und Stromwerte, Abfrage Freigabe

Button "Einstellungen" drücken.

Dialog zur Einstellung der Sprache für die Displayanzeige sowie der Hilfetexte, Einstellung / Konfiguration des Standardzugriffslevels und Einstellung der Darstellung der Spannungs- und Stromwerte.

Einstellungen X						
Sprache Anzeige			Deutsch	•		
Standard Zugriffslevel			Benutzer	•		
Darstellung		1.2kV 5.6mA	•			
			Abbruch		Ok	
T Freigabe	Konfiguration	Voreinstellung	Hauptseitr	e		

Abb. 34: Einstellungen

> In der Auswahlliste die gewünschte Sprache auswählen und mit OK bestätigen. Durch Betätigen der Taste "Abbruch" werden Änderungen nicht übernommen und die zuletzt gültigen Einstellungen sind aktiv.

Mit der Einstellung des Standardzugriffslevels ist das Zugriffslevel konfigurierbar, welches beim Starten des Visualisierungssystems ECC und beim Abmelden des Benutzers aktiv ist.

Die Darstellung der Spannungs- und Stromwerte (Istwerte und Parameterwerte) können in drei unterschiedlichen Methoden dargestellt werden:

Beispiele:

- 1,2 kV / 5,6 mA
- 1,23 kV / 5,67 mA
- 1234 V / 5678 μA

"Abfrage Freigabe"

Mit der "Abfrage Freigabe" kann eine zusätzliche Abfrage zum Setzen bzw. Löschen der Freigabe aktiviert werden.

4.5.2.2.4 Highlight Werte

Button "Highlight Werte" drücken.

Dialog zur Einstellung der Ansicht "Parameter / Status".

Abb. 35: Highlight Werte

> Abhängig von der Zugriffsberechtigung werden einstellbare Istwerte angezeigt. Parameter auswählen und mit OK bestätigen. Durch Betätigen der Taste "Abbruch" werden Änderungen nicht übernommen und die zuletzt gültigen Einstellungen sind aktiv.

4.5.2.2.5 Werkseinstellungen

Button "Werkseinstellungen" drücken.

Nach Betätigen des Buttons "Werkseinstellungen" (siehe Kap. 4.5.2.2) werden nach einer Abfrage und deren Bestätigung alle Parameter in das Netzgerät geladen. Durch Betätigen der Taste "Abbruch" werden Änderungen nicht übernommen und die zuletzt gültigen Einstellungen sind aktiv.

4.5.2.2.6 Anmelden

Button "Anmelden" drücken.

Nach Betätigen des Buttons "Anmelden" öffnet sich eine Eingabemaske zur Eingabe des Passwortes des Benutzers. Nach erfolgreicher Anmeldung schließt die Eingabemaske automatisch.

Detaillierte Informationen zur Festlegung und Änderung der unterschiedlichen Benutzer-Passwörter siehe Kap. 4.5.2.2.1.

300428

4.5.2.3 Voreinstellung

Button "Voreinstellung" drücken.

Dialog zum Laden, Speichern, Bearbeiten und Löschen von Voreinstellungen des kompletten Parametersatz zur schnellen Anpassung der unterschiedlichen Werte für den jeweiligen Betrieb.

Im linken Teil der Ansicht sind die aktuell gespeicherten Voreinstellungen, der rechte Teil zeigt die möglichen Optionen einer Bearbeitung.

Abb. 36: Übersicht Voreinstellung

Laden

Die aktuelle ausgewählte Voreinstellung (z.B. "Preset_0001") wird nach der Betätigung des Buttons "Laden" in den Parametersatz des Netzgerätes geladen.

Neu

Der aktuell eingestellte Parametersatz wird unter dem einzugebenden Namen in der Liste der Voreinstellungen abgespeichert.

Ändern

Bearbeitung der ausgewählten Voreinstellung. Es können alle Parameter sowie der Dateiname angepasst werden.

Löschen

Löschen der ausgewählten Voreinstellung. Nach Betätigung des Buttons "Löschen" wird der Eintrag aus der Liste der Voreinstellungen entfernt.

4.5.2.4 Übersicht Meldungsübersicht

Button "Meldungsübersicht" drücken.

Anzeige der aktuell aufgetretenen Fehler- bzw. Warnungsmeldungen

Abb. 37: Übersicht Meldungsübersicht

> Nach Betätigung des Buttons "Fehlerhistorie" erscheint eine chronologische Auflistung aller aufgetretenen Meldungen.

Durch Klicken auf den jeweiligen Eintrag werden weitere Informationen zur Ursache der Meldung und Behebung angezeigt.

Abb. 38: Übersicht Details Fehler

> Nach Betätigung des Buttons "Quittieren" erfolgt eine interne Überprüfung; nach erfolgreicher Prüfung wird die Meldung aus der Liste entfernt.

300426

Bei Meldungen, die nicht quittiert werden können, ist ein Neustart des Netzgerätes zur Behebung des Fehlers notwendig; über Button "Gerät neu starten" wird ein Neustart durchgeführt. Zu beachten ist, dass "Diagnose-Meldungen" nicht über diese Option behebbar sind. Hier ist ein Aus- und Einschalten des Netzgerätes zwingend notwendig.

4.5.2.5 Parameter

Die Einstellung der Parameter mittels des Displays ist über den Button "Parameter" durchzuführen. Zum Öffnen den Button "Parameter" im oberen Bereich der Hauptansicht betätigen. Daraufhin öffnet sich eine Übersicht aller Parameter, die mit dem aktuellen Zugriffslevel lesbar sind. Die Parameter sind entsprechend ihrer Funktion angeordnet. Je nach Geräteausführung sind bis zu vier Unterpunkte für die Parametereinstellung vorhanden.

Die Einstellung der Parameter ist durch das Verändern des Schiebereglers im rechten Bereich der entsprechenden Zeile möglich. Nach Betätigung des Buttons "Ändern" wird der neue Parameterwert übertragen und gespeichert.

Weiterhin ist es möglich, durch das Betätigen der Zahl im mittleren Bereich der Zeile ein weiteres Fenster zur Einstellung des Parameters zu öffnen.

Abb. 39: Übersicht Parameter

Abb. 40: Parameter-Einstellung

> In diesem Fenster ist es möglich, durch das Betätigen der Plus- und Minus-Taste den Parameterwert zu verändern. Ebenso kann der Schieberegler hierfür genutzt werden. Durch Betätigung des Buttons "Ok" wird der Wert gesetzt und gespeichert.

B00460

Die Auswahlliste zur Einstellung der Parameter wird durch das Betätigen des dargestellten Parameterwerts geöffnet.

Abb. 41: Parameter-Auswahlliste

> Zur Einstellung den entsprechenden Parameterwert in der Liste auswählen und durch Betätigung des Buttons "Ok" bestätigen. Daraufhin wird der Wert gesetzt und abgespeichert.

> Eine komplette Übersicht der einstellbaren Parameter mit deren Grenzen und Beschreibung finden Sie in Kapitel A.3 "Übersicht Parameter", Seite 98.

4.5.2.5.1 Parameter Entladung

Alle zur Einstellung der Entladespannung notwendigen Parameter sind in diesem Punkt zusammengefasst. Zum Öffnen dieser Übersicht den Unterpunkt "Entladung" in der Parameterübersicht auswählen.

Abb. 42: Parameter Entladung

> Zur Optimierung des Entladeergebnisses ist die Entladespannung einstellbar. Die Veränderung der Entladespannung und der Ionen-Balance ist im Bereich der definierten Grenzen möglich. Ebenso kann die Frequenz der Entladespannung der unterstützten Einstellungen ausgewählt werden.

Zu beachten ist, dass bei der Auswahl der Einstellung zur dauerhaften Aktivierung des Referenzpunkts keine Anpassung der Entladespannung mit den eingestellten Parametern vorgenommen wird. Die Entladespannung ist in dieser Einstellung auf feste Werte für die Entladespannung, Entladefrequenz und Ionen-Balance eingestellt.

Eine komplette Übersicht der Parameter zur Einstellung der Entladung finden Sie in Kapitel A.3.1 "Parameter Entladung", Seite 98.

Weitere Informationen zur Anpassung der Entladespannung finden Sie in Kapitel A.4 "Optimierung Restladung", Seite 104.

300462

4.5.2.5.2 Parameter Performance Control

nur für Varianten ES61/P siehe Tabelle Pos. 1, Kapitel 1.4 "Varianten", Seite 10

Die zur Einstellung der Performance Control verfügbaren Parameter sind in diesem Bereich zusammengefasst. Zum Öffnen dieser Übersicht den Unterpunkt "Performance Control" in der Parameterübersicht auswählen. Für jeden Anschluss der Entladung ist ein weiterer Unterpunkt vorhanden. In diesem sind dann die zur Einstellung der Performance Control benötigten Parametern des jeweilig ausgewählten Anschlusses aufgelistet.

Alle zur Einstellung der Entladespannung notwendigen Parameter sind in diesem Punkt zusammengefasst. Zum Öffnen dieser Übersicht den Unterpunkt "Entladung" in der Parameterübersicht auswählen.

Abb. 43: Parameter Performance Control

> Die Performance Control dient zur Überwachung des angeschlossenen Verbrauchers. Diese ist für jeden Anschluss individuell zur optimalen Überwachung des jeweiligen Verbrauchers einzustellen.

Grundsätzlich sind die Einstellungen bei deaktivierter Hochspannung vorzunehmen. Ebenso sollten die Einstellungen nach Austausch des angeschlossenen Verbrauchers angepasst und die Kalibrierung erneut durchgeführt werden. Dies verbessert die Zuverlässigkeit der Überwachung und erhöht die Prozessstabilität im laufenden Betrieb.

Die aktive Länge und die Kabellänge des angeschlossenen Verbrauchers sind für den entsprechenden Anschluss einzustellen. Ebenso kann das Warnungslevels zur Erkennung der Warnung für die Verschmutzung angepasst werden. Hierdurch ist die Empfindlichkeit der Verschmutzungsüberwachung einstellbar.

300463

Mit der Einstellung zur Aktivierung des Referenzpunktes wird ausgewählt, zu welchen Zeitpunkten bzw. in welchen Intervallen die Verschmutzungsüberwachung für den Anschluss durchgeführt wird. Grundsätzlich wird bei jedem Einschalten der Entladespannung diese durchgeführt.

Eine detaillierte Beschreibung der Funktionsweise finden Sie in Kapitel Kapitel A.5 "Verschmutzungsüberwachung", Seite 106.

Eine komplette Übersicht der Parameter zur Einstellung der Performance Control finden Sie in Kapitel A.3.2 "Parameter Performance Control", Seite 99.

4.5.2.5.3 Parameter Allgemein

Die zur allgemeinen Einstellung des Geräts verfügbaren Parameter sind in diesem Unterpunkt der Parameterübersicht aufgelistet. Zum Öffnen dieser Übersicht den Unterpunkt "Allgemein" in der Parameterübersicht auswählen.

Status	Parame	eter	Istwerte	Allgemein		
Entladung Performance		ce Control	Allgemein		Sensor	
O Akt	tiv			Ändern		
HSP Freigabe M	lodus	HMI			-	
Warnung Überl Entladung	lastung	Aktiviert	_		•	
Modus Meldesig	gnal	Verschmutz	ung		•	
Freigabe Konfig	uration Voreinstell	ung	Hauptseite	ele v1.8.4 - s	< 🛆	

In diesem Bereich sind Einstellungen für den Anzeigemodus des LED-Balkens, des Freigabemodus der Entladespannung und viele weitere allgemeine Gerätefunktionen möglich. Eine komplette Übersicht der Parameter zur Einstellung der Performance Control finden Sie in Kapitel A.3.3 "Parameter Allgemein", Seite 101.

Abb. 44: Parameter Allgemein

4.5.2.5.4 Parameter Sensor

nur für Varianten ES61/_...C und ES61/_...S, siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10

Zur Einstellung der über den Sensoreingang genutzten externen Sensoren stehen die Parameter über den Button "Sensor" zur Verfügung. Zum Öffnen dieser Übersicht den Unterpunkt "Sensor" in der Parameterübersicht auswählen.

Status	Parame	eter	Istwerte	Allgemein			
Entladung	Performan	ce Control	Allgemein	Sensor			
Aktiv Ändern							
Modus Sensor	eingang	Drehzahlser	isor				
Minimale Umd Drehzahlsenso	rehungen or	300	💂 rpm (
Freigabe Kon	iguration Voreinstell	ung	Hauptseite	U1.8.4 - SU			

B00465

In Abhängigkeit des eingestellten Modus des Sensoreingangs sind die einzelnen Parametern zur Einstellung angezeigt.

Mehrere Einstellmöglichkeiten zur Auswertung der angeschlossenen Sensoren sind verfügbar. Zu beachten ist, dass die in den Rotationsdüsen verbauten Drehzahlsensoren bzw. die angegebenen E-Feld-Sensoren durch die Auswertung unterstützt werden.

Einstellung Drehzahlsensor

Mittels des Drehzahlsensors ist es möglich, die entsprechende Rotationsdüse auf ihre Funktion zu überwachen. Unterschreitet die aktuelle Drehzahl den eingestellten Minimalwert erkennt das Gerät die entsprechende Warnung und stellt diese dar. Diese Warnung tritt nur bei aktivierter Hochspannung auf und wird automatisch bei Überschreitung des minimalen Wertes wieder gelöscht.

Abb. 45: Parameter

Drehzahlsensor

Einstellung E-Feld-Sensor

Für eine korrekte Messung des angeschlossenen E-Feldsensors sind einige Einstellungen vorzunehmen.

Abb. 46: Parameter E-Feld-Sensor

> Zunächst ist der entsprechende Typ des Sensors auszuwählen. Zur korrekten Umrechnung des gemessenen elektrostatischen Feldes in die resultierende Spannung ist der Arbeitsabstand des Sensors einzustellen.

Die Nullpunktabweichung des Sensors kann ebenfalls eingestellt werden. Diese Einstellung empfiehlt sich vor allem bei Anwendungen mit hohen Anforderungen an die Präzision der Messung. Zur Ermittlung der vorhandenen Abweichung zunächst die Einstellung auf den Wert von 0 V setzen. Dann eine geerdete metallische Platte im Arbeitsabstand des Sensors montieren, den aktuellen Messwert ablesen und nachfolgend den Parameterwert einstellen.

Zur Prozessüberwachung ist es möglich, ein Fehler- bzw. Warnungslevel für das durch den Sensor gemessene E-Feld einzustellen. Diese Werte sind für den jeweiligen Prozess anzupassen und sind zunächst außerhalb des Messbereiches des Sensors eingestellt. Durch diese Grundeinstellung ist garantiert, dass keine unerwünschte Fehler- bzw. Warnungsmeldung generiert und die Entladespannung auf Grund dieser deaktiviert wird.

Eine komplette Übersicht der Parameter zur Einstellung der Performance Control finden Sie in Kapitel A.3.4 "Parameter Sensor", Seite 103.

4.5.2.6 Istwerte

Die aktuellen Istwerte sind auf dem Tab "Istwerte" der Hauptansicht dargestellt. Zum Öffnen den Button "Istwerte" im oberen Bereich der Hauptansicht betätigen. Daraufhin öffnet sich eine Übersicht aller Istwerte, die mit dem aktuellen Zugriffslevel lesbar sind. Die Istwerte sind entsprechend ihrer Funktion angeordnet. Je nach Geräteausführung sind bis zu vier Unterpunkte für die Darstellung der Istwerte vorhanden.

Eine komplette Übersicht der einzelnen Werte und deren Beschreibung finden Sie in Kapitel A.2 "Übersicht Istwerte", Seite 95.

4.5.2.6.1 Istwerte Entladung

Darstellung der aktuellen Messwerte der Ströme, Spannungen und Leistung der Entladespannung. Zum Öffnen dieser Übersicht den Unterpunkt "Entladung" in der Darstellung der Istwerte auswählen.

Eine komplette Übersicht der Istwerte der Entladung finden Sie in Kapitel A.2.1 "Istwerte Entladung", Seite 95.

300466

Abb. 47: Istwerte Entladung
4.5.2.6.2 Istwerte Performance Control

nur für Varianten ES61/P siehe Tabelle Pos. 1, Kapitel 1.4 "Varianten", Seite 10

Darstellung der Istwerte zur Performance Control. Zum Öffnen dieser Übersicht den Unterpunkt "Performance Control" in der Darstellung der Istwerte auswählen. Für jeden Anschluss der Entladung ist ein weiterer Unterpunkt vorhanden. In diesem Unterpunkt sind dann die ermittelte Verschmutzung und die Leistung des Verbrauchers sowie der Zustand der Performance Control dargestellt.

Eine komplette Übersicht der Istwerte zur Performance Control finden Sie in Kapitel A.2.2 "Istwerte Performance Control", Seite 96.

B00467

BA-de-2089-2405_ES61

Abb. 48: Istwerte Performance

Control

4.5.2.6.3 Istwerte Allgemein

Darstellung interner Istwerte der Versorgungsspannung und Gerätetemperatur. Zum Öffnen dieser Übersicht den Unterpunkt "Allgemein" in der Darstellung der Istwerte auswählen.

Abb. 49: Istwerte Allgemein

Eine komplette Übersicht der allgemeinen Istwerte finden Sie in Kapitel A.2.3 "Istwerte Allgemein", Seite 96.

B00468

4.5.2.6.4 Istwerte Sensor

nur für Varianten ES61/_...C und ES61/_...S, siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10

Darstellung der aktuellen Messwerte der extern angeschlossenen Sensoren. Zum Öffnen dieser Übersicht den Unterpunkt "Sensor" in der Darstellung der Istwerte auswählen.

In Abhängigkeit des eingestellten Modus des Sensoreingangs sind die entsprechenden Istwerte in dieser Darstellung angezeigt.

Eine komplette Übersicht der Istwerte der extern angeschlossenen Sensoren finden Sie in Kapitel Kapitel A.2.4 "Istwerte Sensor", Seite 97.

> electrostatic innovations

300469

Abb. 50: Istwerte Sensor

4.5.2.7 Allgemeine Geräteinformationen

Übersicht allgemeiner Geräteinformationen. Zum Öffnen den Button "Allgemein" im oberen Bereich der Hauptansicht betätigen. Daraufhin öffnet sich die Übersicht mit Anzeige der Seriennummer, Softwareversionen und Betriebsstundenzähler.

5. Wartung

Warnung! Stromschlaggefahr!

- Schalten Sie vor allen Wartungs- und Reparaturarbeiten das Netzgerät ab und unterbrechen Sie die Versorgungsspannung.
- Die Maschine, an der die Geräte installiert sind, darf nicht in Betrieb sein.
- Reparatur- und Wartungsarbeiten dürfen nur von Elektrofachkräften durchgeführt werden.

Das Netzgerät ist in regelmäßigen Abständen auf seine korrekte Funktion zu überprüfen. Der Anschlussbereich der Hochspannungskabel muss frei von Verschmutzungen sein. Die Intervalle für die Prüfung sind anwendungsspezifisch und daher in Abhängigkeit von den Einsatzbedingungen vom Betreiber festzulegen. Das Netzgerät selbst bedarf keiner speziellen Wartung.

6. Störungsbeseitigung

Warnung! Stromschlaggefahr!

- Schalten Sie vor allen Wartungs- und Reparaturarbeiten das Netzgerät ab und unterbrechen Sie die Versorgungsspannung.
- Die Maschine, an der die Geräte installiert sind, darf nicht in Betrieb sein.
- Reparatur- und Wartungsarbeiten dürfen nur von Elektrofachkräften durchgeführt werden.

6.1 Fehlermeldungen

Bei Auftreten einer Störung wird die Hochspannung umgehend abgeschaltet und der Störmeldeausgang auf 0 V gezogen.

Hinweis!

Störungen werden nicht gespeichert. Eine Unterbrechung der Versorgungsspannung führt automatisch zum Wegfall der Störungsmeldung.

In nachfolgender Tabelle sind die einzelnen Fehlernummern nach Nummern gelistet.

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme	
1	Nein	Initialisierung fehlgeschlagen	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken. 	
2	Nein	CPU Takt fehlerhaft	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken. 	
3	Nein	Ungültige Hochspanungs- konfiguration	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken. 	
4	Nein	Ungültige Schnittstellen- konfiuration	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken. 	
5	Nein	Ungültige Fehlernummer	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken. 	
6	Nein	Ungültiger Fehlerzustand	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken. 	

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme
7	Nein	Ungültige Warnungsnummer	Versorgungsspannung unterbrechen.Bei erneutem Auftreten Gerät zur Reparatur einschicken.
8	Nein	Ungültiger Warnungs- zustand	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
9	Nein	Ungültige Sperre Endstufen	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
10	Nein	Ungültiger Systemzustand	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
11	Nein	Ungültige Kalibrierdaten	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
14	Nein	Ungültige Parameterdaten	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
15	Nein	Ungültiger Betriebs- zustand	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
16	Nein	Ungültiges Kommando Parameterzugriff	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
17	Nein	Ungültiger Applikationszustand	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
18	Nein	Ungültiger Datenblock	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
19	Nein	Ungültige Datenposition	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
22	Ja	24 V DC Versorgung fehlerhaft	 24 V DC Versorgung prüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme
35	Ja	Sperre der Hochspannung fehlgeschlagen	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
37	Ja	Ungültiger Freigabezustand	 Freigabeschaltung der Hochspannung prüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
42	Ja	Allgemeiner Speicherfehler	 Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
43	Ja	Lesezugriff Speicher	Fehler quittieren.Bei erneutem Auftreten Gerät zur Reparatur einschicken.
44	Ja	Schreibzugriff Speicher	 Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
45	Ja	Ungültige Parameteradresse	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
49	Ja	LEDs	 Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
51	Ja	Tastatur	Fehler quittieren.Bei erneutem Auftreten Gerät zur Reparatur einschicken.
57	Ja	Temperatur	 Einbau des Netzgerätes prüfen. Kühlung des Gehäuses verbessern. Umgebungstemperatur reduzieren. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme
58	Ja	Hochspannung Entladung	 Elektrode reinigen. Einbauposition überprüfen. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
59	Ja	Strom Hochspannung Entladung	 Elektrode reinigen. Einbauposition überprüfen. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
61	Ja	Leistung Hochspannung Entladung	 Elektrode reinigen. Einbauposition überprüfen. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
62	Ja	E-Feldsensor 1	 Externen Sensor überprüfen. Einstellungen überprüfen. Elektrode reinigen. Einbauposition überprüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
64	Ja	Verschmutzung Entladung 1	 Elektrode reinigen. Einbauposition überprüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
65	Ja	Verschmutzung Entladung 2	 Elektrode reinigen. Einbauposition überprüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme
66	Ja	Verschmutzung Entladung 3	 Elektrode reinigen. Einbauposition überprüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
67	Ja	Verschmutzung Entladung 4	 Elektrode reinigen. Einbauposition überprüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
68	Ja	Anschluss Entladung 1	 Hochspannungskabel und -anschlüsse überprüfen. Elektrode reinigen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
69	Ja	Anschluss Entladung 2	 Hochspannungskabel und -anschlüsse überprüfen. Elektrode reinigen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
70	Ja	Anschluss Entladung 3	 Hochspannungskabel und -anschlüsse überprüfen. Elektrode reinigen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
71	Ja	Anschluss Entladung 4	 Hochspannungskabel und -anschlüsse überprüfen. Elektrode reinigen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
73	Ja	Allgemeiner Fehler Ethernet Modul	 Busleitungen prüfen. Kommunikation mit Steuerung überprüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme
74	Ja	Kommunikationsfeh- Ier Ethernet Modul	 Busleitungen prüfen. Kommunikation mit Steuerung überprüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
76	Ja	Ungültiger Betriebs- zustand Ethernet Modul	 Busleitungen prüfen. Kommunikation mit Steuerung überprüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.

6.2 Warnungsmeldungen

Bei Auftreten einer Warnung wird die Ausgabe der Hochspannung nicht gesperrt.

Hinweis!

Warnungen werden nicht gespeichert. Eine Unterbrechung der Versorgungsspannung führt automatisch zum Wegfall der Warnungsmeldung.

In nachfolgender Tabelle sind die Nummern der aufgetretenen Warnungen aufgelistet.

Warnungs- nummer	Ursache	Maßnahme
1	Fehler nicht quittierbar	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur ein- schicken.
2	Zu quittierender Fehler nicht aufgetreten	Warnung quittieren.
3	Fehlerzähler weist ungültigen Wert auf.	Warnung quittieren.
4	Freigabe der Endstufe ist gesperrt.	 Während der Freigabe der Hochspannung ist ein Fehler aufgetreten. Freigabetelegramm nicht erneut senden. Zunächst Fehlerursache beseitigen und danach die Warnung quittieren.
26	Temperatur	 Einbau des Netzgerätes prüfen. Kühlung des Gehäuses verbessern. Umgebungstemperatur reduzieren. Sollwert verringern.
27	Spannungslimit Entladung	Elektrode reinigen.Einbauposition prüfen.
28	Stromlimit Entladung	Elektrode reinigen.Einbauposition prüfen.
29	Leistungslimit Entladung	 Elektrode reinigen. Einbauposition prüfen. Sollwert verringern. Anschlussleistung reduzieren. Frequenz Entladung reduzieren.
35	Verschmutzungs- kalibrierung	Elektrode reinigen.Einbauposition überprüfen.Warnung quittieren.

Warnungs- nummer	Ursache	Maßnahme
36	Verschmutzung Entladung 1	 Elektrode reinigen. Einbauposition überprüfen. Warnung quittieren.
37	Verschmutzung Entladung 2	Elektrode reinigen.Einbauposition überprüfen.Warnung quittieren.
38	Verschmutzung Entladung 3	Elektrode reinigen.Einbauposition überprüfen.Warnung quittieren.
39	Verschmutzung Entladung 4	 Elektrode reinigen. Einbauposition überprüfen. Warnung quittieren.
40	Überlast Entladung 1	 Hochspannungskabel und -anschlüsse überprüfen. Elektrode reinigen. Einbauposition überprüfen. Anschlussleistung reduzieren.
41	Überlast Entladung 2	 Hochspannungskabel und -anschlüsse überprüfen. Elektrode reinigen. Einbauposition überprüfen. Anschlussleistung reduzieren.
42	Überlast Entladung 3	 Hochspannungskabel und -anschlüsse überprüfen. Elektrode reinigen. Einbauposition überprüfen. Anschlussleistung reduzieren.
43	Überlast Entladung 4	 Hochspannungskabel und -anschlüsse überprüfen. Elektrode reinigen. Einbauposition überprüfen. Anschlussleistung reduzieren.
44	Drehzahlsensor 1	Externen Sensor überprüfen.Einbauposition überprüfen.Warnung quittieren.
54	Analoger Sensoreingang	Externen Sensor überprüfen.Einstellungen überprüfen.Warnung quittieren.

Warnungs- nummer	Ursache	Maßnahme
56	E-Feld-Sensor 1	 Externen Sensor überprüfen. Einstellungen überprüfen. Elektrode reinigen. Einbauposition überprüfen. Warnung quittieren.
64	CAN Kommunikation	 Busverkabelung prüfen. Eingestellte Baudrate prüfen. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
65	Allgemeiner CANopen® Kommunikationsfehler	 Busverkabelung prüfen. CANopen® Übertragung prüfen. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
66	CANopen® SDO Zugriff	 SDO Protokoll zur Übertragung prüfen. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
67	CANopen® PDO Zugriff	 PDO Protokoll zur Übertragung prüfen. PDO Zugriff mit EDS Datei vergleichen. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
68	CANopen® PDO Datenlänge fehlerhaft	 PDO Protokoll zur Übertragung prüfen. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur ein- schicken.
69	CANopen® Bufferüberlauf	 Buslast zu hoch. Zu viele CAN Nachrichten gesendet. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
70	CANopen® Fehlerfeld Übertragungsfehler	 Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur ein- schicken.

Warnungs- nummer	Ursache	Maßnahme
71	CANopen® Knotenüberwachungsf- ehler	 Knotenüberwachung des CANopen® - Masters prüfen. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur ein- schicken.
72	Fehler bei erneutem Verbindungsaufbau	 Busverkabelung prüfen. Eingestellte Baudrate prüfen. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur ein- schicken.
81	Parameter Minimum unterschritten	 Parameter automatisch auf Minimum korrigiert. Warnung quittieren.
82	Parameter Maximum überschritten	Parameter automatisch auf Maximum korrigiert.Warnung quittieren.
84	Ungültiger Parameterwert	 Parameter nicht geändert. Korrekten Wert übertragen. Warnung quittieren.

7. Technische Daten ES61

Eingang			
	ES61/_A	ES61/_D	
Versorgungsspannung	90 - 264 V AC, 47 - 63 Hz	24 V DC ±15 %	
	An den Eingangssteckern der 24 V DC Versorgungsspannung, den analogen Schnittstellen der Entladung sowie den Feldbusschnitt- stellen darf die Spannung 60 V nicht überschreiten.		
Leistungsaufnahme	max. 50	Watt	
Einschaltstrom	max. 75 A		
empfohlene Auslöse-Charakteristik nach DIN EN 60947-2	2 A/C	4 A/C	
Sicherung (Primärkreis)	siehe Typenschild		
Netzanschlusskabel	nach Gerätevariante entweder mit Schutzkontaktstecker (ca. 2,5 m) oder mit freiem Ende (Kabellänge max. 99 m) oder steckbar		
Konnektivität			
Bedienung	optional: Folientastatur oder Display		
Schnittstellen	CANopen®, unterstützte Baudraten: 10 kBit/s, 20 kBit/s, 50 kBit/s, 125 kBit/s, 250 kBit/s, 500 kBit/s, 800 kBit/s, 1000 kBit/s ModbusTCP, unterstützte Übertragungsgeschwindigkeiten: 10 / 100 MBit/s		
I/O-Schnittstelle	24 V DC Eingang für Hochspannungsfreigabe Störmeldeausgang: max. 24 V DC ±20 % / 50 mA interne Absicherung Meldeausgang: max. 24 V DC ±20 % / 50 mA) interne Absicherung		
Sensoreingang	24 V DC Ausgang: max. 24 V DC ±20 % / 50 mA) interne Absicherung analoger Sensoreingang: 0 - 10 V digitaler Sensoreingang: 0 - 24 V bei ausgeschaltetem Netzgerät und deaktivierter Hochspannungs- erzeugung		

Ausgang			
Spannung	3,5 - 5 KV AC		
Strom	max. 6,2 mA		
Frequenz	50 - 200 Hz		
Anschlüsse	4, in Stufen einstellbar		
Belastbarkeit	abhängig von Elektrodentyp sowie - bellänge (siehe Kap. 3.3.1)	länge und Hochspannungska-	
Features			
Ionen-Balance	Ionen-Balance einstellbar zwischen 0 - 15 % des eingestellten Soll- werts der Entladespannung. Einstellung sowohl für positive als auch negative Polarität möglich.		
Performance Control (optional)	Anschlüsse separat überwacht Erkennung von Verbrauchern, Verschmutzung und Überlastung		
passiver Betriebsmodus	bei ausgeschaltetem Netzgerät bzw. deaktivierter Hochspannung		
Eckdaten			
Gehäusetyp	Stahlblech mit Wandhalterung		
Betriebsumgebungs- temperatur	+5+50 °C (+41+122°F)		
Lagertemperatur	-20+80 °C (-4+176 °F)		
Umgebungsfeuchte	max. 80 % r. F. nicht kondensierend		
Schutzart	IP54 gemäß EN 60529		
Gehäusegröße	240 x 180 x 100 mm [L x B x H]		
Gewicht	ca. 4,1 kg		

CE

Abmessungen 8.

Montage mit 2x Sechskantschraube M5 (alternativ M6) mit Beilagscheibe

Maße

9. Ersatzteile und Zubehör

Artikel	Artikel-Nr.
Hochspannungsverteiler Entladung, 4 Anschlüsse	
(1 Hochspannungskabel, 4 Ausgange) Stecker- und Buchsentyn sowie Kabellänge angeben	ESV61/
Hochspannungsverteiler Entladung 2 Anschlüsse	
(1 Hochspannungskabel, 2 Ausgänge)	
Stecker- und Buchsentyp sowie Kabellänge angeben	ESVY61/
Verlängerungskabel	KE/_B
Netzkabel 24 V DC	
(kundenseitigen Anschluss und Kabellänge spezifizieren)	KN/H
Stecker M16 für 24 V DC Spannungsversorgung, konfektionierbar	116136
kundenseitig offene Kabelenden (Kabellänge angeben)	CS/EMO
Stecker M12, 5-polig für I/O-Schnittstelle	116138
Schnittstellenkabel Feldbus CANopen®, male, kundenseitig Stecker/Buchse, gerade/gewinkelt oder offene Kabelenden wählbar (Kabellänge angeben)	CS/CM
Stecker M12, 4-polig für Sensoreingang	118380
Schnittstellenkabel Feldbus CANopen®, female, kundenseitig Stecker/Buchse, gerade/gewinkelt oder offene Kabelenden wählbar (Kabellänge angeben)	CS/CF
T-Verteiler M12, 5-polig, geschirmt	114854
Adapter D-Sub-Buchse, M12-Stecker	114858
Schnittstellenkabel Feldbus Industrial Ethernet, male, kundenseitig Stecker, gerade/gewinkelt oder offene Kabelenden wählbar (Kabellänge angeben)	CS/IM
Schnittstellenkabel Feldbus industrial Ethernet, male, kundenseitig RJ45 (Kabellänge angeben, max. 10 m)	CS/IMR
Schutzkappe M12-Stecker	108448
Schutzkappe Service-Schnittstelle	116121
Schutzkappe M12-Buchse	108449
Schutzkappe M16-Stecker	ELM01115
Abschlussstecker CANopen®	114855
Abschlussdose CANopen®	117550
Feinsicherung AC-Variante	113522
Feinsicherung DC-Variante	ELM00048
E-Feld-Sensor IZD 10-110 (Messbereich +/- 0,4 kV)	114944
E-Feld-Sensor IZD 10-510 (Messbereich +/- 20 kV)	118599
Volt Stick	109136
Betriebsanleitung (Sprache angeben)	BA-xx-2089

Geben Sie bei einer Bestellung bitte immer die Artikelnummer an.

10. Entsorgung

Das Netzgerät ES61 kann nach den Methoden der allgemeinen Abfallentsorgung (Elektroschrott) erfolgen.

A. ANHANG

- A.1 Konfektionierung der Stecker
- A.1.1 Stecker M16 für 24 V DC Spannungsversorgung Gerade Version, Ausführung mit Schirmklemmring

Abb. 53: Stecker M16 für 24 V DC Spannungsversorgung

- 1. Druckschraube, Klemmkorb, Dichtung, Distanzhülse auf ersten Schirmklemmring auffädeln.
- 2. Litzen abisolieren, Schirm aufweiten und zweiten Schirmklemmring auffädeln.
- 3. Litzen anlöten, Distanzhülse montieren, die beiden Klemmringe mit dem Schirm zusammenschieben und überstehenden Schirm abschneiden.
- 4. Übrige Teile gemäß Darstellung montieren.

A.1.2 Stecker M12, 4- bzw. 5-polig für I/O-Schnittstelle und Sensoreingang

A.2 Übersicht Istwerte

A.2.1 Istwerte Entladung

Funktion	Beschreibung	Standard Zugriffslevel
Spannung Entladung	Effektivwert der sinusförmigen Ausgangsspannung der Entladung	Betrachter
Spannung positiv	Effektivwert der positiven sinusförmigen Ausgangs- spannung der Entladung	Super Benutzer
Spannung negativ	Effektivwert der negativen sinusförmigen Ausgangs- spannung der Entladung	Super Benutzer
Aktiver Entladestrom	Effektivwert des aktiven sinusförmigen AC Stroms der Entladung	Betrachter
Passiver Entladestrom	Mittelwert des passiven DC Stroms der Entladung	Super Benutzer
Leistung Entladung	Ausgangsleistung der Entladung	Betrachter
Betriebszustand Entladung	Aktueller Betriebszustand der Entladung mit Anzeige des Modus und evtl. aktivem Limiter	Benutzer
Auslastung Entladung	Prozentuale Hochspannungs-Auslastung der Entladung	Betrachter

A.2.2 Istwerte Performance Control

nur für Varianten ES61/P, siehe Tabelle Pos. 1, Kapitel 1.4 "Varianten", Seite 10

Funktion	Beschreibung	Standard Zugriffslevel
Status Entladung 1	Zustand der Entladung Anschluss 1	Benutzer
Verschmutzung Entladung 1	Ermittelte Verschmutzung Entladung Anschluss 1	Benutzer
Leistung Entladung 1	Effektive Leistung Entladung Anschluss 1	Super Benutzer
Status Entladung 2	Zustand der Entladung Anschluss 2	Benutzer
Verschmutzung Entladung 2	Ermittelte Verschmutzung Entladung Anschluss 2	Benutzer
Leistung Entladung 2	Effektive Leistung Entladung Anschluss 2	Super Benutzer
Status Entladung 3	Zustand der Entladung Anschluss 3	Benutzer
Verschmutzung Entladung 3	Ermittelte Verschmutzung Entladung Anschluss 3	Benutzer
Leistung Entladung 3	Effektive Leistung Entladung Anschluss 3	Super Benutzer
Status Entladung 4	Zustand der Entladung Anschluss 4	Benutzer
Verschmutzung Entladung 4	Ermittelte Verschmutzung Entladung Anschluss 4	Benutzer
Leistung Entladung 4	Effektive Leistung Entladung Anschluss 4	Super Benutzer

A.2.3 Istwerte Allgemein

Funktion	Beschreibung	Standard Zugriffslevel
Versorgung Spannung	Spannung der internen Versorgungsspannung	Benutzer
Temperatur Gerät	Interne Gerätetemperatur	Super Benutzer

A.2.4 Istwerte Sensor

nur für Varianten ES61/_...C und ES61/_...S, siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10

Funktion	Beschreibung	Standard Zugriffslevel
Umdrehungen Drehzahlsensor 1	Aktuelle Umdrehungszahl des externen Drehzahlsensors 1	Benutzer
E-Feld-Sensor 1	Aktueller Messwert des externen E-Feld-Sensors	Benutzer

A.3 Übersicht Parameter

A.3.1 Parameter Entladung

Funktion	Beschreibung	Standard Zugriffslevel	Bereich	Werksein- stellung
Spannungs- sollwert Entladung	Einstellung des Sollwerts der Hochspannung, Entladung	Betrachter (lesen) Benutzer (schreiben)	3.500 V - 5.000 V	4.600 V
lonen- Balance	Optimierung der Ent- ladung der Einstellung der Balance positiver und negativer Ionen	Betrachter (lesen) Benutzer (schreiben)	-100 - +100 %	0 %
Aktivierung Referenz- punkt	Einstellung zur Aktivierung des Referenz- punktes zur Ausführung der Performance Control, Entladung	Benutzer (lesen, schreiben)	Hochspannungs- freigabe Dauerhaft Zyklisch 1 Minute Zyklisch 10 Minuten Zyklisch 30 Minuten Zyklisch 60 Minuten Anfrage Feldbus	Hoch- span- nungs- freigabe
Frequenz Entladung	Einstellung der Frequenz der Hochspannung, Entladung	Betrachter (lesen) Benutzer (schreiben)	50 Hz, 62,5 Hz, 75 Hz, 87,5 Hz, 100 Hz, 125 Hz, 150 Hz, 175 Hz, 200 Hz	50 Hz
Betriebs- zustand Entladung	Auswahl des Betriebs- zustands, Entladung	Super Benutzer (lesen, schreiben)	passive Entladung, aktive Entladung	aktive Entladung

A.3.2 Parameter Performance Control

nur für Variante ES61/P siehe Tabelle Pos. 1, Kapitel 1.4 "Varianten", Seite 10

Funktion	Beschreibung	Standard Zugriffslevel	Bereich	Werksein- stellung
Erkennung Verschmut- zung 1	Einstellung der Verschmut- zungsüberwachung Entladung Anschluss 1	Benutzer (lesen) Super Benutzer (schreiben)	AUS AN Kalibrierung	AUS
Aktive Länge 1	Angabe der angeschlos- senen aktiven Länge Entladung Anschluss 1	Benutzer (lesen) Super Benutzer (schreiben)	0 - 6.000 mm	0 mm
Kabellänge 1	Angabe der angeschlos- senen Kabellänge Entladung Anschluss 1	Benutzer (lesen) Super Benutzer (schreiben)	0 - 350 dm	0 dm
Warnungs- level 1	Einstellung des Warnungs- levels für die Verschmut- zungsüberwachung Entladung Anschluss 1	Benutzer (lesen, schreiben	20 - 90 %	50 %
Erkennung Verschmut- zung 2	Einstellung der Verschmut- zungsüberwachung Entla- dung Anschluss 2	Benutzer (lesen) Super Benutzer (schreiben)	AUS AN Kalibrierung	AUS
Aktive Länge 2	Angabe der angeschlos- senen aktiven Länge Entla- dung Anschluss 2	Benutzer (lesen) Super Benutzer (schreiben)	0 - 6.000 mm	0 mm
Kabellänge 2	Angabe der angeschlos- senen Kabellänge Entladung Anschluss 2	Benutzer (lesen) Super Benutzer (schreiben)	0 - 350 dm	0 dm
Warnungs- level 2	Einstellung des Warnungs- levels für die Verschmut- zungsüberwachung Entladung Anschluss 2	Benutzer (lesen, schreiben	20 - 90 %	50 %
Erkennung Verschmut- zung 3	Einstellung der Verschmut- zungsüberwachung Entla- dung Anschluss 3	Benutzer (lesen) Super Benutzer (schreiben)	AUS AN Kalibrierung	AUS
Aktive Länge 3	Angabe der angeschlos- senen aktiven Länge Entladung Anschluss 3	Benutzer (lesen) Super Benutzer (schreiben)	0 - 6.000 mm	0 mm

Funktion	Beschreibung	Standard Zugriffslevel	Bereich	Werksein- stellung
Kabellänge 3	Angabe der angeschlos- senen Kabellänge Entladung Anschluss 3	Benutzer (lesen) Super Benutzer (schreiben)	0 - 350 dm	0 dm
Warnungs- level 3	Einstellung des Warnungs- levels für die Verschmut- zungsüberwachung Entladung Anschluss 3	Benutzer (lesen, schreiben	20 - 90 %	50 %
Erkennung Verschmut- zung 4	Einstellung der Verschmut- zungsüberwachung Entladung Anschluss 4	Benutzer (lesen) Super Benutzer (schreiben)	AUS AN Kalibrierung	AUS
Aktive Länge 4	Angabe der angeschlos- senen aktiven Länge Entladung Anschluss 4	Benutzer (lesen) Super Benutzer (schreiben)	0 - 6.000 mm	0 mm
Kabellänge 4	Angabe der angeschlos- senen Kabellänge Entladung Anschluss 4	Benutzer (lesen) Super Benutzer (schreiben)	0 - 350 dm	0 dm
Warnungs- level 4	Einstellung des Warnungs- levels für die Verschmut- zungsüberwachung Entladung Anschluss 4	Benutzer (lesen, schreiben	20 - 90 %	50 %
Aktivierung Referenz- punkt	Einstellung zur Aktivierung des Referenzpunktes zur Ausführung der Performance Control, Entladung	Benutzer (lesen, schreiben)	Hochspannungs- freigabe Dauerhaft Zyklisch 1 Minute Zyklisch 10 Minuten Zyklisch 30 Minuten Zyklisch 60 Minuten Anfrage Feldbus	Hoch- span- nungs- freigabe

A.3.3 Parameter Allgemein

Je nach Variante können die Angaben für den Einstellungsbereich und die Werkseinstellungen des jeweiligen Parameters abweichen. Die Angaben beziehen sich auf eine Variante mit maximal möglicher Ausstattung.

Funktion	Beschreibung	Standard Zugriffslevel	Bereich	Werksein- stellung
Hochspan- nungs- Freigabe- modus	Modus zur Freigabe der Hochspannung	Super Benutzer (lesen, schreiben)	Autostart HMI Feldbus HMI + Feldbus Hardware-Freigabe Hardware-Freigabe + HMI Hardware-Freigabe + Feldbus Hardware-Freigabe + HMI + Feldbus	HMI
Warnung Überlastung Entladung	Einstellung der Überlastung Warnungsmeldung der Entladung	Super Benutzer (lesen, schreiben)	Deaktiviert Aktiviert	Aktiviert
Modus Melde- ausgang	Einstellung des Modus des Meldeausgangs I/O-Schnittstelle	Super Benutzer (lesen, schreiben)	Hochspannung aktiv Warnung Verschmutzung	Hochspan- nung aktiv
Modus LED-Balken	Umschaltung der Ansicht des LED- Balkens des Netzgeräts	Benutzer (lesen, schreiben)	Spannung Frequenz Balance Verschmutzung Verschmutzung Entladung 1 Verschmutzung Entladung 2 Verschmutzung Entladung 3 Verschmutzung Entladung 4	Spannung

Funktion	Beschreibung	Standard Zugriffslevel	Bereich	Werksein- stellung
CANopen® Knoten- adresse	Einstellung der CANopen® Knotenadresse des Gerätes	Super Benutzer (lesen, schreiben)	1 - 126	99
CANopen® Baudrate	Einstellung der CANopen®Baudrate des Gerät	Super Benutzer (lesen, schreiben)	AUS 10 kBit/s, 25 kBit/s, 50 kBit/s, 125 kBit/s, 250 kBit/s, 500 kBit/s, 800 kBit/s, 1000 kBit/s	125 kBit/s

A.3.4 Parameter Sensor

nur für Varianten ES61/_C und ES61/_S, siehe Tabelle Pos. 6, Kapitel 1.4 "Varianten", Seite 10

Funktion	Beschreibung	Standard Zugriffslevel	Bereich	Werksein- stellung
Modus Sensor- eingang	Einstellung des Modus des Sensoreingangs	Benutzer (lesen) Super Benutzer (schreiben)	AUS Drehzahlsensor E-Feld-Sensor	AUS
Minimale Umdre- hungsge- schwindig- keit	Einstellung der überwachten mini- malen Umdrehungs- geschwindigkeit der Drehzahlsensoren	Benutzer (lesen) Super Benutzer (schreiben)	0 - 1.200 rpm	300 rpm
Typ E-Feld- Sensor 1	Auswahl des angeschlossenen E-Feld-Sensors	Benutzer (lesen) Super Benutzer (schreiben)	SMC IZD 10-110. SMC IZD 10-510	SMC IZD 10-110
Abstand E-Feld- Sensor 1	Einstellung des Abstandes zur Umrechnung des E-Feldes	Benutzer (lesen) Super Benutzer (schreiben)	10 mm - 50 mm (SMC IZD 10-110) 25 mm - 75 mm (SMC IZD 10-510)	25 mm
Warnungs- level E-Feld- Sensor 1	Einstellung zur Warnungserken- nung bei Mess- wertüberschreitung	Benutzer (lesen) Super Benutzer (schreiben)	0 V - 1.000 V (SMC IZD 10-110) 0 V - 30.000 V (SMC IZD 10-510)	800 V
Fehlerlevel E-Feld- Sensor 1	Einstellung zur Fehlererkennung bei Messwertüberschrei- tung	Benutzer (lesen) Super Benutzer (schreiben)	0 V - 1.000 V (SMC IZD 10-110) 0 V - 30.000 V (SMC IZD 10-510)	1.000 V
Nullpunkt E-Feld- Sensor 1	Einstellung zur Kompensation der Nullpunkt- abweichung	Super Benutzer (lesen) Super Benutzer (schreiben)	-100 V - 100 V (SMC IZD 10-110) -1.000 V - 1.000 V (SMC IZD 10-510)	0 V

A.4 Optimierung Restladung

Alle Netzgeräte der Serie ES61 unterstützen eine Vielzahl an Einstellungsmöglichkeiten zur Optimierung der auf der Oberfläche des zu entladenen Substrats gemessenen Restladung. Mit der Einstellung der Frequenz bzw. des Spannungssollwerts der Entladespannung sowie der Ionen-Balance ist dieser Messwert veränderbar.

Die Einstellung der einzelnen Parameter ist nicht trivial und ist für jede Anwendung durch den Nutzer anzupassen. Je nach eingesetztem Typ des Verbrauchers und dem Arbeitsabstand des Verbraucher können diese Einstellung stark voneinander abweichen.

Die nachfolgenden Angaben beschreiben die Vorgehensweise zur Einstellung der einzelnen Parameter. Weiterhin sind Empfehlungen für die einzelnen Parameter aufgeführt.

Im ersten Schritt ist die Welligkeit der Restladung durch das Anpassen der Frequenz der Entladespannung zu optimieren. Diese Welligkeit resultiert aus der AC-Hochspannungserzeugung. Die eingestellte Frequenz der Entladespannung korrespondiert mit der gemessenen Frequenz der Restladung. Durch das Erhöhen der Frequenz wird die Welligkeit durch das vermehrte Wechseln der Polarität der Entladespannung verringert. Nach dem Anpassen der Frequenz sind nun die Einstellungen des Sollwerts der Entladespannung und die Ionen-Balance zu nutzen. In der Regel empfiehlt es sich, zunächst den Sollwert anzupassen und im zweiten Schritt die Ionen-Balance.

Abb. 55: Restladung Entladeelektrode R50

Abb. 56: Restladung Entladeelektrode R60L

A.5 Verschmutzungsüberwachung

Die Verschmutzungsüberwachung ist ein Bestandteil der in das Netzgerät integrierten Performance Control zur unabhängigen Überwachung der einzelnen Anschlüsse. Die Performance Control ist ausschließlich in den Gerätevarianten ES61/P verfügbar und ist ein innovatives Prinzip zur Überwachung der angeschlossenen Verbraucher.

Verbraucher der Serie R50, R60L, R47, R55E und PR55 können auf Verschmutzungen jeder Art überwacht werden.

Die Vorgehensweise zur Einstellung und Nutzung der Verschmutzungsüberwachung ist für alle Anschlüsse und Verbraucher identisch.

- Zunächst ist vor der Einstellung der Parameter die Entladespannung zu deaktivieren.
- Im nächsten Schritt sind die Werte der aktiven Länge und Kabellänge des angeschlossenen Verbrauchers am Gerät einzustellen.
 Für die Ionenblasdüsen R55E und Ionenblaspistolen PR55 ist die Einstellung der aktiven Länge von 15 mm vorzunehmen.
- Für die möglichst optimale Erkennung der Verschmutzungen ist stets bei Austausch bzw. neuem Anschluss eines Verbrauchers die Kalibrierung der Verschmutzungsüberwachung erneut durchzuführen.
- Die Kalibrierung erfolgt bei aktivierter Entladespannung. Alle notwendigen Werte f
 ür den angeschlossenen Verbraucher werden durch die Kalibrierung ermittelt und eingestellt. Nach erfolgreicher Kalibrierung ist die Verschmutzungs
 überwachung aktiv und überwacht den angeschlossenen Verbraucher.

Mit den weiteren Einstellungen zur Aktivierung des Referenzpunktes ist der Zeitpunkt bzw. das Intervall zur Durchführung der Verschmutzungsüberwachung einstellbar.

Zur optimalen Beurteilung der berechneten Werte zu den Kalibrierdaten des Verbrauchers wird stets ein fest definierter Referenzpunkt zur Einstellung der Entladespannung genutzt.

Mit dem Parameter des Warnungslevels ist die Empfindlichkeit zur Erkennung der Warnung für jeden Anschluss individuell einstellbar.

Nachfolgend ist schematisch die Vorgehensweise zur Einstellung dargestellt.

F00088y

Abb. 57: Vorgehensweise Einstellung Verschmutzungsüberwachung

Weitere Informationen zur Einstellung der Verschmutzungsüberwachung siehe Kapitel 4.5.1.11 "Setup-Menü Performance Control", Seite 50 und Kapitel 4.5.2.5.2 "Parameter Performance Control", Seite 68.

EU-Konformitätserklärung

CE-2089-de-2405

Eltex-Elektrostatik-Gesellschaft mbH Blauenstraße 67 - 69 D-79576 Weil am Rhein

CE

erklärt in alleiniger Verantwortung, dass das Produkt

Netzgeräte Typ ES51, ES53, ES60, ES61 (gemäß Eltex Referenzcode)

mit den nachfolgenden Richtlinien und Normen übereinstimmt.

Angewandte EU-Richtlinie:	
2014/35/EG	Niederspannungsrichtlinie
Angewandte harmonisierte Norm:	
EN 60204-1:2018	Sicherheit von Maschinen – Elektrische Ausrüstung von Maschinen – Allgemeine Anforderungen
Angewandte EU-Richtlinie:	
2014/30/EU	EMV Richtlinie
Angewandte harmonisierte Normen:	
EN 55011:2016 + A1:2017 + A11.2020 + A2:2021	Industrielle, wissenschaftliche und medizinische Geräte – Funkstörungen – Grenzwerte und Messverfahren
EN IEC 61000-3-2:2019	Elektromagnetische Verträglichkeit (EMV) – Grenzwerte für Oberschwingungsströme (Geräte-Eingangsstrom ≤ 16 A je Leiter)
EN 61000-3-3:2013 + A1:2019	Elektromagnetische Verträglichkeit (EMV) – Grenzwerte – Begrenzung von Spannungsänderungen, Spannungsschwankungen und Flicker in öffentlichen Niederspannungs-Versorgungsnetzen für Geräte mit einem Bemessungsstrom ≤ 16 A je Leiter, die keiner Sonderausschlussbedingung unterliegen
EN IEC 61000-6-2:2019	Elektromagnetische Verträglichkeit (EMV) – Fachgrundnormen – Störfestigkeit für Industriebereiche
Angewandte EU-Richtlinie:	
2011/65/EU	RoHS Richtlinie

jeweils in der gültigen Fassung zum Zeitpunkt der Geräteauslieferung.

Eltex-Elektrostatik-Gesellschaft mbH hält folgende technische Dokumentation zu Einsicht:

- vorschriftsmäßige Bedienungsanleitung
- Pläne
- sonstige technische Dokumentationen

Weil am Rhein, den 14.05.2024 Ort/Datum

Lukas Hahne, Geschäftsführer

UKCA Declaration of Conformity

CA-2089-en-2405

Eltex-Elektrostatik-Gesellschaft mbH Blauenstraße 67 - 69 D-79576 Weil am Rhein

declares in its sole responsibility that the product

Power Supply Type ES51, ES53, ES60, ES61 (according to Eltex reference code)

complies with the following directives and standards.

Applicable Regulation: S.I. 2016 No. 1101 Used Designated Standard:

Electrical Equipment (Safety) Regulations BS EN 60204-1:2018

Applicable Regulation: S.I. 2016 No. 1091 Used Designated Standard:

Electromagnetic Compatibility Regulations BS EN IEC 61000-3-2:2019+A1:2021 BS EN 61000-3-3:2013+A2:2021 BS EN IEC 61000-6-2:2019 BS EN 55011:2016+A2:2021

Applicable Regulation: S.I. 2012 No. 3032

RoHS Regulations

in the version effective at the time of delivery.

Eltex-Elektrostatik-Gesellschaft mbH keep the following documents for inspection:

- proper operating instructions
- plans
- other technical documentation

Lykas Hahne, Managing Director

Weil am Rhein, 14.05.2024 Place/Date

Eltex Unternehmen und Vertretungen

Die aktuellen Adressen aller Eltex Vertretungen finden Sie im Internet unter www.eltex.de

